• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1900001 (2022)
Hao Li1、2, Wei Huang1、2, Yulong Cui1、2, Wenxi Pei1、3, and Zefeng Wang1、2、3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, Hunan, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/LOP202259.1900001 Cite this Article Set citation alerts
    Hao Li, Wei Huang, Yulong Cui, Wenxi Pei, Zefeng Wang. Progress and Prospect of Fiber Lasers Operating at 1.7 μm Band[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900001 Copy Citation Text show less
    Tm-doped fiber laser. (a) Spatially structure CW Tm-doped fiber laser operating at 1.7 μm band; (b) evolution of output power with wavelength[15]
    Fig. 1. Tm-doped fiber laser. (a) Spatially structure CW Tm-doped fiber laser operating at 1.7 μm band; (b) evolution of output power with wavelength[15]
    All-fiber structure CW Tm-doped fiber laser operating at 1.7 μm band. (a) Tunable wavelength; (b) fixed wavelength[18]
    Fig. 2. All-fiber structure CW Tm-doped fiber laser operating at 1.7 μm band. (a) Tunable wavelength; (b) fixed wavelength[18]
    Ring-cavity structure CW Tm-doped fiber laser operating at 1.7 μm band [25]
    Fig. 3. Ring-cavity structure CW Tm-doped fiber laser operating at 1.7 μm band [25]
    Raman fiber laser operating at 1.7 μm band based on the stimulated Raman scattering [2]
    Fig. 4. Raman fiber laser operating at 1.7 μm band based on the stimulated Raman scattering [2]
    Raman soliton fiber laser operating at 1.7 μm band based on the soliton self-frequency shift[57]
    Fig. 5. Raman soliton fiber laser operating at 1.7 μm band based on the soliton self-frequency shift[57]
    Fiber optical parametric oscillator operating at 1.7 μm band based on the four-wave mixing[60]
    Fig. 6. Fiber optical parametric oscillator operating at 1.7 μm band based on the four-wave mixing[60]
    Super-continuum spectrum light source operating at 1.7 μm band [8]
    Fig. 7. Super-continuum spectrum light source operating at 1.7 μm band [8]
    Quasi-all-fiber single-pass structure pulsed fiber hydrogen Raman laser operating at 1.7 μm band (insert: schematic diagram of cross section of used hollow-core fibers)[90]
    Fig. 8. Quasi-all-fiber single-pass structure pulsed fiber hydrogen Raman laser operating at 1.7 μm band (insert: schematic diagram of cross section of used hollow-core fibers)[90]
    All-fiber resonant cavity structure CW fiber hydrogen Raman laser operating at 1.7 μm band[97]
    Fig. 9. All-fiber resonant cavity structure CW fiber hydrogen Raman laser operating at 1.7 μm band[97]
    Year

    Fiber

    type

    Cavity

    scheme

    Pump wavelength /nmOutput wavelength /nmOutput power /WSlope efficiency /%Line width /pmRef.
    2004TDFLinear7901734-1736≤0.001≤0.2≈3014
    2006TDFLinear15651723-19732-8.4≤46≤50015
    2008TDFLinear7901650-2100<0.02382.8×10516
    2013TTDFRing12101635.6-1766≤1.6×10-4≤0.234
    2014THDFRing15501727-2030≤0.408≤42.635
    2014BDFLinear15681625-1775≤0.6≤2036
    2015TDFLinear790,15651740-20700.517
    2015TDFLinear15651660-1720,17260.065-1.5,12.6≤46,63—,7018
    2015BDFLinear156817001.0533≈4×10337
    2015TDFLinear155017500.423.55420
    2016TDFLinear155017071.2836.14421
    2017TDFLinear155017073.1542.15022
    2019TDFLinear158017264780≈3×10319
    2020TDFLinear155017232×10-418023
    2020TDFRing15701712-17200.1-0.227≤10.323.724
    2020TDFRing157017202.3650.23925
    2021TDFLinear161017270.0124.818.5×10-529
    2021TDFRing157017200.40722.74.3×10-526
    2021TDFRing157017201.1146.41.8×10-527
    2021TDFLinear156017201.13687528
    Table 1. Progress of CW fiber laser operating at 1.7 μm band based on rare-earth-doped fibers
    Year

    Fiber

    type

    Pulse generation methodPump wavelength /nmOutput wavelength/nmOutput average power /mW

    Pulse

    width

    Power

    conversion efficiency /%

    Ref.
    2016BDFMode-locked15651730101.65 ps0.838
    2016THDFMode-locked15561705-18052-12630-950 fs0.1-0.539
    2017TDFMode-locked15601785264445 fs1030
    2018THDFIM121117813.41.4 μs1.441
    2018BDFMode-locked1570170020.428 ps,630 fs440
    2018TDFGain switch15601690-1765284-654190 ns,150 ns10.7-24.89
    2019TDFMode-locked1650175050-2510.8-3.7 ns1-531
    2020TDFGain switch15601700,1725,1750582,668,75316.7 ns<25.110
    2020TDFMode-locked15651740-1892<1802.76 ps<1033
    2021TDFMode-locked156017463.55230 fs0.332
    Table 2. Progress of pulsed fiber laser operating at 1.7 μm band based on rare-earth-doped fibers
    YearFiber typeNonlinear effectsPump wavelength /nmOutput wavelength /nmOutput power /WEfficiency /%Line width /pmRef.
    2011SMFSRS154217084<10002
    2012PMRFSRS156416790.27567(slope)2742
    2013PMRFSRS156416800.51467(slope)2443
    2014MMFSRS15451638-16753.627.7(power conversion)<30044
    2017HNLFSRS1539-15631652-16806.3×10-523.245
    2018RFSRS1064167666.942.4(power conversion)767046
    2018RFSRS106216916.921(power conversion)470047
    2019PMSMFSRS15501655,16796.2,579,64(power conversion)5000,160048
    2019RFSRS1055-10721695-172510-14.425.6(power conversion)<1×10449
    2020RFSRS1117169210437(power conversion)200051
    2020CCFSRS106617212.166(power conversion)424050
    Table 3. Progress of CW fiber laser operating at 1.7 μm band based on nonlinear effects
    Year

    Fiber

    type

    Nonlinear effectsPump wavelength /nmOutput wavelength /nmOutput average power /mW

    Pulse

    width

    Power

    conversion efficiency /%

    Ref.
    2011HNLFSC15601350-200030122 fs7
    2011LMAFSSFS15441560-170087-277200 fs8-2755
    2011LMAFSSFS15501580-213020-284>70 fs56
    2013LMAPCFSSFS15601600-1780126-54680-95 fs28-4457
    2014HNLFSC16711400-190060<137 fs508
    2015HNLFSRS15391651110890 ps11.552
    2015CCFSRS156516864400128 ns27.253
    2016HNPCFSC15641600-2180100015 ps3763
    2017LMAFSC15501350-1700230-33050 fs10-2064
    2017DSFSSFS16001700-1740<26.8196 fs<8058
    2018DSFFWM1546-15681617-1876<14.3>14 ps<2060
    2018DSFFWM15601620-1870<20414.5 ps<2061
    2019PMVMAFSSFS14801620-1990<1500>120 fs<359
    2019HNASMFSC19141700-233092865 fs3265
    2020RFSRS1117169323×103100 μs-100 ms851
    2020HGDFSRS15411652-165498.531 ns<3.254
    2020DSFFWM155017001420450 fs2062
    Table 4. Progress of pulsed fiber laser operating at 1.7 μm band based on nonlinear effects
    YearSystem structure

    Raman

    gas

    Pump wavelength /nmOutput wavelength /nm

    Output

    average power /W

    Pulse width /nsOptical conversion efficiency /%Line width /pmRef.
    2019Quasi-all-fiberDeuterium1535-15651640-16740.812605.299
    2020Quasi-all-fiberDeuterium1540-15501645-16562.91258<200100
    2020Quasi-all-fiberHydrogen155017050.51232<20090
    2020Quasi-all-fiberHydrogen1535-15651687-17230.81060<20091
    2020Quasi-all-fiberHydrogen1540-15501693-17053.31360<20093
    2021

    All-fiber

    (single-pass)

    Hydrogen154016932.15CW31<20094
    2021

    All-fiber

    (single-pass)

    Hydrogen1540-15501693-17051.631058<20095
    2021

    All-fiber

    (single-pass)

    Deuterium1538-15501643-16561.22046<20096
    2021All-fiber(oscillator)Hydrogen154016931.8CW62<20097
    2021All-fiber(oscillator)Hydrogen154016931.53054<20098
    Table 5. Progress of fiber gas Raman laser operating at 1.7 μm band based on hollow-core fibers
    Hao Li, Wei Huang, Yulong Cui, Wenxi Pei, Zefeng Wang. Progress and Prospect of Fiber Lasers Operating at 1.7 μm Band[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900001
    Download Citation