• Advanced Photonics
  • Vol. 5, Issue 3, 034002 (2023)
Qiang Luo, Fang Bo*, Yongfa Kong, Guoquan Zhang, and Jingjun Xu
Author Affiliations
  • Nankai University, TEDA Institute of Applied Physics and School of Physics, MOE Key Laboratory of Weak-Light Nonlinear Photonics, Tianjin, China
  • show less
    DOI: 10.1117/1.AP.5.3.034002 Cite this Article Set citation alerts
    Qiang Luo, Fang Bo, Yongfa Kong, Guoquan Zhang, Jingjun Xu. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 2023, 5(3): 034002 Copy Citation Text show less
    References

    [1] G. Poberaj et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev., 6, 488(2012).

    [2] A. Boes et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 12, 1700256(2018).

    [3] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287(2020).

    [4] C. Wang et al. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924(2014).

    [5] R. Wu et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116(2018). https://doi.org/10.1364/OL.43.004116

    [6] J. Wang et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072(2015).

    [7] R. Gao et al. Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett., 20, 011902(2022). https://doi.org/10.3788/col202220.011902

    [8] J. Zhang et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials, 9, 1218(2019).

    [9] R. Wu et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 8, 910(2018).

    [10] M. Zhang et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017). https://doi.org/10.1364/OPTICA.4.001536

    [11] C. Wang et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [12] M. He et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbits1 and beyond. Nat. Photonics, 13, 359(2019). https://doi.org/10.1038/s41566-019-0378-6

    [13] M. Zhang et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica, 8, 652(2021).

    [14] M. Xu, X. Cai. Advances in integrated ultra-wideband electro-optic modulators [Invited]. Opt. Express, 30, 7253(2022).

    [15] J. Lin et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [16] J.-Y. Chen et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244(2019).

    [17] J. Lu et al. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica, 7, 1654(2020).

    [18] Z. Hao et al. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photonics Res., 8, 311(2020). https://doi.org/10.1364/PRJ.382535

    [19] Y. He et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138(2019). https://doi.org/10.1364/OPTICA.6.001138

    [20] Z. Gong et al. Near-octave lithium niobate soliton microcomb. Optica, 7, 1275(2020).

    [21] M. Zhang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373(2019).

    [22] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242(2021).

    [23] G. Chen et al. Advances in lithium niobate photonics: development status and perspectives. Adv. Photon., 4, 034003(2022).

    [24] R.-R. Xie et al. Microresonators in lithium niobate thin films. Adv. Opt. Mater., 9, 2100539(2021).

    [25] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [26] J. Lin et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910(2020).

    [27] Y. Liu et al. On-chip erbium-doped lithium niobate microcavity laser. Sci. China-Phys. Mech. Astron., 64, 234262(2021).

    [28] R. Zhang et al. Integrated lithium niobate single-mode lasers by the Vernier effect. Sci. China-Phys. Mech. Astron., 64, 294216(2021).

    [29] X. Yan et al. Integrated spiral waveguide amplifiers on erbium-doped thin-film lithium niobate(2021).

    [30] Y. Han et al. Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser. Opt. Lett., 46, 5413(2021).

    [31] X. Zhang et al. Heterogeneous integration of III-V semiconductor lasers on thin-film lithium niobite platform by wafer bonding. Appl. Phys. Lett., 122, 081103(2023).

    [32] C. Op de Beeck et al. III/V-on-lithium niobate amplifiers and lasers. Optica, 8, 1288(2021).

    [33] A. Shams-Ansari et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica, 9, 408(2022).

    [34] M. Li et al. Integrated Pockels laser. Nat. Commun., 13, 5344(2022).

    [35] E. Lallier. Rare-earth-doped glass and LiNbO3 waveguide lasers and optical amplifiers. Appl. Opt., 31, 5276(1992). https://doi.org/10.1364/AO.31.005276

    [36] E. Cantelar et al. Modelling of optical amplification in Er/Yb co-doped LiNbO3 waveguides. Opt. Quantum. Electron., 32, 819(2000). https://doi.org/10.1023/A:1007066529097

    [37] W. Sohler et al. Erbium-doped lithium niobate waveguide lasers. IEICE Trans. Electron., E88C, 990(2005).

    [38] M. George et al. In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser. Laser Photonics Rev., 7, 122(2013). https://doi.org/10.1002/lpor.201200063

    [39] P. Izabella et al. Single crystal growth and optical properties of LiNbO3 doped with Er3+, Tm3+ and Mg2+. Proc. SPIE, 2373, 65(1995).

    [40] M. N. Palatnikov et al. Growth and concentration dependencies of rare-earth doped lithium niobate single crystals. J. Cryst. Growth, 291, 390(2006).

    [41] I. Baumann et al. Erbium incorporation in LiNbO3 by diffusion-doping. Appl. Phys. A, 64, 33(1996). https://doi.org/10.1007/s003390050441

    [42] M. Fleuster et al. Optical and structural properties of MeV erbium-implanted LiNbO3. J. Appl. Phys., 75, 173(1994). https://doi.org/10.1063/1.355879

    [43] P. Becker et al. Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths. Appl. Phys. Lett., 61, 1257(1992). https://doi.org/10.1063/1.107610

    [44] A. Polman. Erbium implanted thin film photonic materials. J. Appl. Phys., 82, 1(1997).

    [45] Y. Jia et al. Integrated photonics based on rare-earth ion-doped thin-film lithium niobate. Laser Photonics Rev., 16, 2200059(2022).

    [46] Y. Chen. Photonic integration on rare earth ion-doped thin-film lithium niobate. Sci. China-Phys. Mech. Astron., 65, 294231(2022).

    [47] S. Dutta et al. Integrated photonic platform for rare-earth ions in thin film lithium niobate. Nano Lett., 20, 741(2020).

    [48] S. Wang et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl. Phys. Lett., 116, 151103(2020).

    [49] D. Pak et al. Ytterbium-implanted photonic resonators based on thin film lithium niobate. J. Appl. Phys., 128, 084302(2020).

    [50] K. Xia et al. Tunable microcavities coupled to rare-earth quantum emitters. Optica, 9, 445(2022).

    [51] L. Yang et al. Photonic integration of Er3+:Y2SiO5 with thin-film lithium niobate by flip chip bonding. Opt. Express, 29, 15497(2021). https://doi.org/10.1364/OE.423659

    [52] X. Jiang et al. Rare earth-implanted lithium niobate: properties and on-chip integration. Appl. Phys. Lett., 115, 071104(2019).

    [53] S. Dutta et al. An atomic frequency comb memory in rare-earth doped thin-film lithium niobate(2021).

    [54] S. Wang et al. Er:LiNbO3 with high optical coherence enabling optical thickness control. Phys. Rev. A., 18, 014069(2022). https://doi.org/10.1103/PhysRevApplied.18.014069

    [55] C. W. Thiel, T. Böttger, R. L. Cone. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin., 131, 353(2011).

    [56] T. Böttger et al. Optical decoherence and spectral diffusion at 1.5  μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration. Phys. Rev. B, 73, 075101(2006). https://doi.org/10.1103/PhysRevB.73.075101

    [57] C. E. Rüter et al. Optical characterization of a neodymium-doped lithium-niobate-on-insulator (LNOI). Opt. Mater. Express, 11, 4007(2021).

    [58] E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 69, 37(1946).

    [59] D. J. Heinzen et al. Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett., 58, 1320(1987).

    [60] J. M. Gérard et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett., 81, 1110(1998).

    [61] Q. Xu et al. Er3+-doped lithium niobate thin film: a material platform for ultracompact, highly efficient active microphotonic devices. Adv. Photonics Res., 2, 2100081(2021). https://doi.org/10.1002/adpr.202100081

    [62] K. J. Vahala. Optical microcavities. Nature, 424, 839(2003).

    [63] L. He, Ş. K. Özdemir, L. Yang. Whispering gallery microcavity lasers. Laser Photonics Rev., 7, 60(2013).

    [64] Y.-F. Xiao, Q. Song et al. Microdisk lasers: fundamental physics and practical applications. Ultra-High-Q Optical Microcavities, 233(2020).

    [65] L. Yang et al. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process. Appl. Phys. Lett., 86, 091114(2005).

    [66] S. J. Herr, K. Buse, I. Breunig. LED-pumped whispering-gallery laser. Photonics Res., 5, B34(2017).

    [67] R. Gao et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J. Phys., 23, 123027(2021). https://doi.org/10.1088/1367-2630/ac3d52

    [68] E. S. Hosseini et al. Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths. Opt. Express, 18, 2127(2010). https://doi.org/10.1364/OE.18.002127

    [69] C. J. McKinstrie, T. J. Stirling, A. S. Helmy. Laser linewidths: tutorial. J. Opt. Soc. Am. B, 38, 3837(2021).

    [70] Z. Wang et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Opt. Lett., 46, 380(2021). https://doi.org/10.1364/OL.410608

    [71] Q. Luo et al. Microdisk lasers on an erbium-doped lithium-niobite chip. Sci. China-Phys. Mech. Astron., 64, 234263(2021).

    [72] Y. Zhou et al. On-chip microdisk laser on Yb3+-doped thin-film lithium niobate. Opt. Lett., 46, 5651(2021). https://doi.org/10.1364/OL.440379

    [73] Q. Luo et al. On-chip ytterbium-doped lithium niobate microdisk lasers with high conversion efficiency. Opt. Lett., 47, 854(2022).

    [74] C. Strohhöfer, A. Polman. Absorption and emission spectroscopy in Er3+Yb3+ doped aluminum oxide waveguides. Opt. Mater., 21, 705(2003). https://doi.org/10.1016/S0925-3467(02)00056-3

    [75] S. D. Jackson. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics, 6, 423(2012).

    [76] S. Balaji, A. D. Sontakke, K. Annapurna. Yb3+ ion concentration effects on 1  μm emission in tellurite glass. J. Opt. Soc. Am. B, 29, 1569(2012). https://doi.org/10.1364/JOSAB.29.001569

    [77] Q. Luo et al. On-chip erbium-doped lithium niobate microring lasers. Opt. Lett., 46, 3275(2021).

    [78] D. Yin et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. Opt. Lett., 46, 2127(2021).

    [79] Q. Luo et al. Integrated ytterbium-doped lithium niobate microring lasers. Opt. Lett., 47, 1427(2022).

    [80] R. Gao et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator. Opt. Lett., 46, 3131(2021).

    [81] X. Liu et al. Tunable single-mode laser on thin film lithium niobate. Opt. Lett., 46, 5505(2021).

    [82] Z. Xiao et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator. Opt. Lett., 46, 4128(2021).

    [83] T. Li et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator. APL Photonics, 6, 101301(2021).

    [84] J. Lin et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv. Photon., 4, 036001(2022).

    [85] Y. Liang et al. Monolithic single-frequency microring laser on an erbium-doped thin film lithium niobate fabricated by a photolithography assisted chemo-mechanical etching. Opt. Contin., 1, 1193(2022).

    [86] Y. Zhu et al. Electro-optically tunable microdisk laser on Er3+-doped lithium niobate thin film. Chin. Opt. Lett., 20, 011303(2022). https://doi.org/10.1364/COL.20.011303

    [87] J. Guan et al. Monolithically integrated high-power narrow-bandwidth microdisk laser(2022).

    [88] S. Yu et al. On-chip single-mode thin film lithium niobate laser based on Sagnac loop reflectors(2022).

    [89] E. H. Bernhardi et al. Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon. Opt. Lett., 35, 2394(2010). https://doi.org/10.1364/OL.35.002394

    [90] E. S. Hosseini et al. CMOS-compatible 75 mW erbium-doped distributed feedback laser. Opt. Lett., 39, 3106(2014).

    [91] M. Pollnau, J. D. B. Bradley. Optically pumped rare-earth-doped Al2O3 distributed-feedback lasers on silicon [Invited]. Opt. Express, 26, 24164(2018). https://doi.org/10.1364/OE.26.024164

    [92] D. J. Richardson, J. Nilsson, W. A. Clarkson. High power fiber lasers: current status and future perspectives [Invited]. J. Opt. Soc. Am. B, 27, B63(2010).

    [93] C. Jauregui, J. Limpert, A. Tünnermann. High-power fibre lasers. Nat. Photonics, 7, 861(2013).

    [94] D. Y. Shen, J. K. Sahu, W. A. Clarkson. Highly efficient Er,Yb-doped fiber laser with 188 W free-running and >100 W tunable output power. Opt. Express, 13, 4916(2005).

    [95] Y. Jeong et al. Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power. IEEE J. Sel Top. Quant. Electron., 13, 573(2007).

    [96] J. Zhou et al. Laser diode-pumped compact hybrid lithium niobate microring laser. Opt. Lett., 47, 5599(2022).

    [97] M. A. Tran et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature, 610, 54(2022).

    [98] Y. Zhou et al. Monolithically integrated active passive waveguide array fabricated on thin film lithium niobate using a single continuous photolithography process. Laser Photonics Rev., 17, 2200686(2023).

    [99] H. C. Frankis et al. Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5 dB net gain. Photonics Res., 8, 127(2020). https://doi.org/10.1364/PRJ.8.000127

    [100] W. A. P. M. Hendriks et al. Rare-earth ion doped Al2O3 for active integrated photonics. Adv. Phys.: X, 6, 1833753(2021). https://doi.org/10.1080/23746149.2020.1833753

    [101] J. D. B. Bradley, E. S. Hosseini. Monolithic erbium- and ytterbium-doped microring lasers on silicon chips. Opt. Express, 22, 12226(2014).

    [102] K. Miarabbas Kiani et al. Lasing in a hybrid rare-earth silicon microdisk. Laser Photonics Rev., 16, 2100348(2022).

    [103] L. Chang et al. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531(2016).

    [104] X. Han et al. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator platform. Laser Photonics Rev., 16, 2100529(2022).

    [105] R. Wang et al. Widely tunable 2.3  μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing. Photonics Res., 6, 858(2018). https://doi.org/10.1364/PRJ.6.000858

    [106] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 11, 752(2017).

    [107] R. El-Ganainy et al. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11(2018).

    [108] J. Rönn et al. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun., 10, 432(2019).

    [109] S. A. Vázquez-Córdova et al. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon. Opt. Express, 22, 25993(2014).

    [110] J. D. B. Bradley, M. Pollnau. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photonics Rev., 5, 368(2011).

    [111] J. Zhou et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photonics Rev., 15, 2100030(2021).

    [112] Z. Chen et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett., 46, 1161(2021).

    [113] Q. Luo et al. On-chip erbium-doped lithium niobate waveguide amplifiers [Invited]. Chin. Opt. Lett., 19, 060008(2021).

    [114] Y. Liang et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics, 11, 1033(2022).

    [115] Z. Zhang et al. On-chip integrated Yb3+-doped waveguide amplifiers on thin film lithium niobate. Micromachines, 13, 865(2022).

    [116] Y. Jia et al. Dual-color upconversion luminescence emission from Er:LiNbO3 on-chip ridge waveguides. Results Phys., 27, 104526(2021). https://doi.org/10.1016/j.rinp.2021.104526

    [117] M. Cai et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain. IEEE J. Sel Top. Quantum Electron., 28, 8200608(2022).

    [118] C. Huang, L. McCaughan. 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping. IEEE J. Sel Top. Quantum Electron., 2, 367(1996). https://doi.org/10.1109/2944.577396

    [119] Z. Xiao et al. Single-frequency dual-cavity laser on erbium-doped lithium niobate on insulator, T1I.4(2021).

    [120] J. Kim. Chip-scale power booster for light. Science, 376, 1269(2022).

    [121] Y. Liu et al. A photonic integrated circuit–based erbium-doped amplifier. Science, 376, 1309(2022).

    [122] F. D. Patel et al. A compact high-performance optical waveguide amplifier. IEEE Photonics Technol. Lett., 16, 2607(2004).

    [123] H. Chen, M. Leblanc, G. W. Schinn. Gain enhanced L-band optical fiber amplifiers and tunable fiber lasers with erbium-doped fibers. Opt. Commun., 216, 119(2003).

    [124] Y. W. Lee et al. Experimental characterization of a dynamically gain-flattened erbium-doped fiber amplifier. IEEE Photonics Technol. Lett., 8, 1612(1996).

    [125] Y. Seok Hyun et al. Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acousto-optic tunable filters. IEEE Photonics Technol. Lett., 11, 1229(1999).

    [126] P. F. Wysocki et al. Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter. IEEE Photonics Technol. Lett., 9, 1343(1997).

    [127] L. Yi Bin et al. A 105-nm ultrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAs in a parallel configuration. IEEE Photonics Technol. Lett., 16, 1640(2004).

    [128] Z. Chen et al. On-chip waveguide amplifiers for multi-band optical communications: a review and challenge. J. Lightwave Technol., 40, 3364(2022).

    [129] J. Zhang et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics, 4, 110803(2019).

    [130] C. Xiang, W. Jin, J. E. Bowers. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photonics Res., 10, A82(2022).

    [131] N. Li et al. Integrated lasers on silicon at communication wavelength: a progress review. Adv. Opt. Mater., 10, 2201008(2022).

    [132] Y. Han et al. Recent advances in light sources on silicon. Adv. Opt. Photonics, 14, 404(2022).

    [133] C. Yang et al. Advances in silicon-based, integrated tunable semiconductor lasers. Nanophotonics, 12, 197-217(2023).

    [134] Z. Zhou et al. Prospects and applications of on-chip lasers. eLight, 3, 1(2023).

    [135] B. Stern et al. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett., 42, 4541(2017).

    [136] A. Moscoso-Mártir et al. Hybrid silicon photonics flip-chip laser integration with vertical self-alignment, s2069(2017).

    [137] C. Xiang et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 7, 20(2020). https://doi.org/10.1364/OPTICA.384026

    [138] S. Cuyvers et al. Low noise heterogeneous III-V-on-silicon-nitride mode-locked comb laser. Laser Photonics Rev., 15, 2000485(2021).

    [139] C. Op de Beeck et al. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 7, 386(2020).

    [140] V. Snigirev et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature, 615, 411(2023).

    [141] Z. Li et al. Tightly confining lithium niobate photonic integrated circuits and lasers(2022).

    [142] Y. Han et al. Widely tunable O-band lithium niobite/III-V transmitter. Opt. Express, 30, 35478(2022).

    [143] J. Ling et al. Self-injection-locked second-harmonic integrated source(2022).

    [144] X. Zhang et al. Heterogeneously integrated III-V-on-lithium niobate broadband light sources and photodetectors. Opt. Lett., 47, 4564(2022).

    [145] J. Justice et al. Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers. Nat. Photonics, 6, 610(2012).

    [146] J. Juvert et al. Integration of etched facet, electrically pumped, C-band Fabry-Perot lasers on a silicon photonic integrated circuit by transfer printing. Opt. Express, 26, 21443(2018).

    [147] C. Xiang et al. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel Top. Quantum Electron., 28, 8200515(2022).

    [148] L. Yang et al. A 4-Hz fundamental linewidth on-chip microlaser, CMR2(2007).

    [149] N. Toropov et al. Review of biosensing with whispering-gallery mode lasers. Light: Sci. Appl., 10, 42(2021).

    [150] X. Jiang et al. Whispering-gallery sensors. Matter, 3, 371(2020).

    [151] Y. Jun, L. J. Guo. Optical sensors based on active microcavities. IEEE J. Sel Top. Quantum Electron., 12, 143(2006).

    [152] L. He et al. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 6, 428(2011).

    [153] Y. Yu et al. Wavelength-division multiplexing on an etchless lithium niobate integrated platform. ACS Photonics, 9, 3253(2022).

    [154] Y. Zheng, X. Chen. Nonlinear wave mixing in lithium niobate thin film. Adv. Phys.: X, 6, 1889402(2021).

    [155] M. G. Vazimali, S. Fathpour. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photon., 4, 034001(2022).

    [156] C. Wang et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [157] Y. He et al. High-speed tunable microwave-rate soliton microcomb(2022).

    [158] A. S. Raja et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019).

    [159] B. Stern et al. Battery-operated integrated frequency comb generator. Nature, 562, 401(2018).

    [160] B. Shen et al. Integrated turnkey soliton microcombs. Nature, 582, 365(2020).

    [161] C. Xiang et al. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99(2021).

    [162] E. Vissers et al. Hybrid integrated mode-locked laser diodes with a silicon nitride extended cavity. Opt. Express, 29, 15013(2021).

    [163] T. S. L. P. Suzuki et al. Design of a passively mode-locking whispering-gallery-mode microlaser. J. Opt. Soc. Am. B, 38, 3172(2021).

    [164] H. Suche et al. Modelocked Er:Ti:LiNbO3-waveguide laser. Electron. Lett., 29, 1111(1993). https://doi.org/10.1049/el:19930741

    [165] B. Desiatov, M. Lončar. Silicon photodetector for integrated lithium niobate photonics. Appl. Phys. Lett., 115, 121108(2019).

    [166] Y. Xue et al. Waveguide integrated high-speed black phosphorus photodetector on a thin film lithium niobate platform. Opt. Mater. Express, 13, 272(2023).

    [167] S. Wang et al. Integration of black phosphorus photoconductors with lithium niobate on insulator photonics. Adv. Opt. Mater., 11, 2201688(2023).

    [168] A. A. Sayem et al. Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors. Appl. Phys. Lett., 116, 151102(2020).

    [169] R. Cheng et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photonics, 17, 112(2023).

    [170] A. W. Fang et al. Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector. Opt. Express, 15, 2315(2007).

    [171] J. Brouckaert et al. Thin-film III-V photodetectors integrated on silicon-on-insulator photonic ICs. J. Lightwave Technol., 25, 1053(2007).

    [172] J. Wun, Y. Wang, J. Shi. Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies. IEEE J. Sel Top. Quantum Electron., 24, 8500207(2018).

    Qiang Luo, Fang Bo, Yongfa Kong, Guoquan Zhang, Jingjun Xu. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 2023, 5(3): 034002
    Download Citation