• Journal of Semiconductors
  • Vol. 42, Issue 10, 101607 (2021)
Liu Ye1, Weiyu Ye1, and Shiming Zhang1、2
Author Affiliations
  • 1Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
  • 2Jiangsu Seenbom Flexible Electronics Institute Co. Ltd., Nanjing 210043, China
  • show less
    DOI: 10.1088/1674-4926/42/10/101607 Cite this Article
    Liu Ye, Weiyu Ye, Shiming Zhang. Recent advances and prospects of asymmetric non-fullerene small molecule acceptors for polymer solar cells[J]. Journal of Semiconductors, 2021, 42(10): 101607 Copy Citation Text show less
    References

    [1] K N Winzenberg, P Kemppinen, F H Scholes et al. Indan-1, 3-dione electron-acceptor small molecules for solution-processable solar cells: A structure-property correlation. Chem Commun, 49, 6307(2013).

    [2] T L Zhou, T Jia, B N Kang et al. Nitrile-substituted QA derivatives: New acceptor materials for solution-processable organic bulk heterojunction solar cells. Adv Energy Mater, 1, 431(2011).

    [3] Y Fang, A K Pandey, A M Nardes et al. A narrow optical gap small molecule acceptor for organic solar cells. Adv Energy Mater, 3, 54(2013).

    [4] C B Nielsen, E Voroshazi, S Holliday et al. Efficient truxenone-based acceptors for organic photovoltaics. J Mater Chem A, 1, 73(2013).

    [5] J T Bloking, X Han, A T Higgs et al. Solution-processed organic solar cells with power conversion efficiencies of 2.5% using benzothiadiazole/imide-based acceptors. Chem Mater, 23, 5484(2011).

    [6] Y Z Lin, H F Wang, Y F Li et al. A star-shaped electron acceptor based on 5, 5'-bibenzothiadiazole for solution processed solar cells. J Mater Chem A, 1, 14627(2013).

    [7] Y Z Lin, P Cheng, Y F Li et al. A 3D star-shaped non-fullerene acceptor for solution-processed organic solar cells with a high open-circuit voltage of 1.18 V. Chem Commun, 48, 4773(2012).

    [8] J F Li, C K Sun, A L Tang et al. Utilizing an electron-deficient thieno[3, 4-c]pyrrole-4, 6-dione (TPD) unit as a π-bridge to improve the photovoltaic performance of A–π–D–π–A type acceptors. J Mater Chem C, 8, 15981(2020).

    [9] J Y Wang, X W Zhan. Fused-ring electron acceptors for photovoltaics and beyond. Acc Chem Res, 54, 132(2021).

    [10] W Q Chen, Q C Zhang. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). J Mater Chem C, 5, 1275(2017).

    [11] H Sun, X Song, J Xie et al. PDI derivative through fine-tuning the molecular structure for fullerene-free organic solar cells. ACS Appl Mater Interfaces, 9, 29924(2017).

    [12] X B Fan, J H Gao, W Wang et al. Ladder-type nonacyclic arene bis(thieno[3, 2-b]thieno)cyclopentafluorene as a promising building block for non-fullerene acceptors. Chem Asian J, 14, 1814(2019).

    [13] Q S Liu, Y F Jiang, K Jin et al. 18% efficiency organic solar cells. Sci Bull, 65, 272(2020).

    [14] Y Z Lin, J Y Wang, Z G Zhang et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 27, 1170(2015).

    [15] Y Z Lin, Y F Li, X W Zhan. A solution-processable electron acceptor based on dibenzosilole and diketopyrrolopyrrole for organic solar cells. Adv Energy Mater, 3, 724(2013).

    [16] H Y Li, T Earmme, G Q Ren et al. Beyond fullerenes: Design of nonfullerene acceptors for efficient organic photovoltaics. J Am Chem Soc, 136, 14589(2014).

    [17] A Sharenko, C M Proctor, T S van der Poll et al. A high-performing solution-processed small molecule: Perylene diimide bulk heterojunction solar cell. Adv Mater, 25, 4403(2013).

    [18] Y Z Lin, F W Zhao, Y Wu et al. Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv Mater, 29, 1604155(2017).

    [19] X Chen, S H Zheng. On the study of influence of molecular arrangements and dipole moment on exciton binding energy in solid state. Int J Quantum Chem, 121, e26511(2021).

    [20] L Benatto, K R de Almeida Sousa, M Koehler. Driving force for exciton dissociation in organic solar cells: The influence of donor and acceptor relative orientation. J Phys Chem C, 124, 13580(2020).

    [21] J R Cao, S Y Qu, L Q Yang et al. An asymmetric acceptor enabling 77.51% fill factor in organic solar cells. Sci Bull, 65, 1876(2020).

    [22] R J Ma, T Liu, Z H Luo et al. Adding a third component with reduced miscibility and higher LUMO level enables efficient ternary organic solar cells. ACS Energy Lett, 5, 2711(2020).

    [23] L X Yin, Q Q Yuan, Y Q Li. D–A–A'-type asymmetric small molecules based on triphenylamine-diketopyrrolopyrrole/5, 6-difluoro-2, 1, 3-benzothiadiazole backbone for organic photovoltaic materials. New J Chem, 44, 13319(2020).

    [24] D N Congreve, J Lee, N J Thompson et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science, 340, 334(2013).

    [25] P E Schwenn, K Gui, A M Nardes et al. A small molecule non-fullerene electron acceptor for organic solar cells. Adv Energy Mater, 1, 73(2011).

    [26] Y Shu, Y F Lim, Z Li et al. A survey of electron-deficient pentacenes as acceptors in polymer bulk heterojunction solar cells. Chem Sci, 2, 363(2011).

    [27] Y Zhou, L Ding, K Shi et al. A non-fullerene small molecule as efficient electron acceptor in organic bulk heterojunction solar cells. Adv Mater, 24, 957(2012).

    [28] C Li, H T Fu, T Xia et al. Asymmetric nonfullerene small molecule acceptors for organic solar cells. Adv Energy Mater, 9, 1900999(2019).

    [29] C Q Tang, S C Chen, Q Shang et al. Asymmetric indenothiophene-based non-fullerene acceptors for efficient polymer solar cells. Sci China Mater, 60, 707(2017).

    [30] J Yuan, Y Q Zhang, L Y Zhou et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 3, 1140(2019).

    [31] X Guo, Q P Fan, J N Wu et al. Optimized active layer morphologies via ternary copolymerization of polymer donors for 17.6 % efficiency organic solar cells with enhanced fill factor. Angew Chem Int Ed, 60, 2322(2021).

    [32] S X Li, L L Zhan, Y Z Jin et al. Asymmetric electron acceptors for high-efficiency and low-energy-loss organic photovoltaics. Adv Mater, 32, 2001160(2020).

    [33] C X Zhang, R G Liu, C H Mak et al. Photophysics of organic photovoltaic devices: A review. J Photonics Energy, 8, 021001(2018).

    [34] R Ilmi, A Haque, M S Khan. High efficiency small molecule-based donor materials for organic solar cells. Org Electron, 58, 53(2018).

    [35] B Qi, J Wang. Fill factor in organic solar cells. Phys Chem Chem Phys, 15, 8972(2013).

    [36] Y Z Chen, F J Bai, Z X Peng et al. Asymmetric alkoxy and alkyl substitution on nonfullerene acceptors enabling high-performance organic solar cells. Adv Energy Mater, 11, 2003141(2021).

    [37] C Li, Y P Xie, B B Fan et al. A nonfullerene acceptor utilizing a novel asymmetric multifused-ring core unit for highly efficient organic solar cells. J Mater Chem C, 6, 4873(2018).

    [38] J L Song, C Li, L L Ye et al. Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A–D–A type non-fullerene acceptors. J Mater Chem A, 6, 18847(2018).

    [39] S N Liu, B F Zhao, Z Y Cong et al. Influences of the terminal groups on the performances of asymmetric small molecule acceptors-based polymer solar cells. Dyes Pigments, 178, 108388(2020).

    [40] W Gao, T Liu, C Zhong et al. Asymmetrical small molecule acceptor enabling nonfullerene polymer solar cell with fill factor approaching 79%. ACS Energy Lett, 3, 1760(2018).

    [41] X S Li, C Li, L L Ye et al. Asymmetric A–D–π–A-type nonfullerene small molecule acceptors for efficient organic solar cells. J Mater Chem A, 7, 19348(2019).

    [42] W Gao, M Zhang, T Liu et al. Asymmetrical ladder-type donor-induced polar small molecule acceptor to promote fill factors approaching 77% for high-performance nonfullerene polymer solar cells. Adv Mater, 30, 1800052(2018).

    [43] W Gao, F Wu, T Liu et al. Multifunctional asymmetrical molecules for high-performance perovskite and organic solar cells. J Mater Chem A, 7, 2412(2019).

    [44] W Gao, T Liu, R Sun et al. Dithieno[3, 2-b: 2ʹ, 3ʹ-d]pyrrol-fused asymmetrical electron acceptors: A study into the effects of nitrogen-functionalization on reducing nonradiative recombination loss and dipole moment on morphology. Adv Sci, 7, 1902657(2020).

    [45] W Gao, Q S An, C Zhong et al. Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency. Chem Sci, 9, 8142(2018).

    [46] C Li, J L Song, L L Ye et al. High-performance eight-membered indacenodithiophene-based asymmetric A-D-A type non-fullerene acceptors. Sol RRL, 3, 1800246(2019).

    [47] C Li, J L Song, Y H Cai et al. Heteroatom substitution-induced asymmetric A-D-A type non-fullerene acceptor for efficient organic solar cells. J Energy Chem, 40, 144(2020).

    [48] C Li, T Xia, J L Song et al. Asymmetric selenophene-based non-fullerene acceptors for high-performance organic solar cells. J Mater Chem A, 7, 1435(2019).

    [49] X C Wang, J H Han, H X Jiang et al. Regulation of molecular packing and blend morphology by finely tuning molecular conformation for high-performance nonfullerene polymer solar cells. ACS Appl Mater Interfaces, 11, 44501(2019).

    [50] W Gao, T Liu, J W Li et al. Simultaneously increasing open-circuit voltage and short-circuit current to minimize the energy loss in organic solar cells via designing asymmetrical non-fullerene acceptor. J Mater Chem A, 7, 11053(2019).

    [51] X M Zhang, M M Li, Q Wang et al. Near-infrared absorbing non-fullerene acceptors with dithienopyrrole as π spacer for organic solar cells. Chin J Appl Chem, 36, 1023(2019).

    [52] Y F Geng, A L Tang, K Tajima et al. Conjugated materials containing dithieno[3, 2-b: 2', 3'-d]pyrrole and its derivatives for organic and hybrid solar cell applications. J Mater Chem A, 7, 64(2019).

    [53] L Q Yang, X Song, J S Yu et al. Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells. J Mater Chem A, 7, 22279(2019).

    [54] L Q Yang, Z H Hu, Z H Zhang et al. Molecular engineering of acceptors to control aggregation for optimized nonfullerene solar cells. J Mater Chem A, 8, 5458(2020).

    [55] R J Ma, G Li, D D Li et al. Understanding the effect of end group halogenation in tuning miscibility and morphology of high-performance small molecular acceptors. Sol RRL, 4, 2000250(2020).

    [56] G Li, D D Li, R J Ma et al. Efficient modulation of end groups for the asymmetric small molecule acceptors enabling organic solar cells with over 15% efficiency. J Mater Chem A, 8, 5927(2020).

    [57] J R Cao, S Y Qu, J S Yu et al. 13.76% efficiency nonfullerene solar cells enabled by selenophene integrated dithieno[3, 2-b:2', 3'-d]pyrrole asymmetric acceptors. Mater Chem Front, 4, 924(2020).

    [58] Q Guo, R J Ma, J Hu et al. Over 15% efficiency polymer solar cells enabled by conformation tuning of newly designed asymmetric small-molecule acceptors. Adv Funct Mater, 30, 2000383(2020).

    [59] Z H Luo, R J Ma, Y Q Xiao et al. Conformation-tuning effect of asymmetric small molecule acceptors on molecular packing, interaction, and photovoltaic performance. Small, 16, 2001942(2020).

    [60] Z H Zhang, L Q Yang, Z H Hu et al. Charge density modulation on asymmetric fused-ring acceptors for high-efficiency photovoltaic solar cells. Mater Chem Front, 4, 1747(2020).

    [61] Z H Luo, G H Li, K L Wu et al. Asymmetric thieno[2, 3-b]thiophene-based electron acceptor featuring a seven fused-ring electron donor unit as core for nonfullerene organic photovoltaics. Org Electron, 62, 82(2018).

    [62] C C Jiao, Z Q Guo, B Q Sun et al. An acceptor–donor–acceptor type non-fullerene acceptor with an asymmetric backbone for high performance organic solar cells. J Mater Chem C, 8, 6293(2020).

    [63] W Hu, X Y Du, W L Zhuang et al. Axisymmetric and asymmetric naphthalene-bisthienothiophene based nonfullerene acceptors: On constitutional isomerization and photovoltaic performance. ACS Appl Energy Mater, 3, 5734(2020).

    [64] M Q Zhang, Y L Ma, Q D Zheng. Asymmetric indenothienothiophene-based unfused core for A-D-A type nonfullerene acceptors. Dyes Pigments, 180, 108495(2020).

    [65] B Huang, L Chen, X F Jin et al. Alkylsilyl functionalized copolymer donor for annealing-free high performance solar cells with over 11% efficiency: Crystallinity induced small driving force. Adv Funct Mater, 28, 1800606(2018).

    [66] Z J Kang, Y L Ma, Q D Zheng. Asymmetric indenothiophene-based nonfullerene acceptors for binary- and ternary-blend polymer solar cells. Dyes Pigments, 170, 107555(2019).

    [67] L Hong, H F Yao, R N Yu et al. Investigating the trade-off between device performance and energy loss in nonfullerene organic solar cells. ACS Appl Mater Interfaces, 11, 29124(2019).

    [68] W Y Bai, X P Xu, Q Y Li et al. Efficient nonfullerene polymer solar cells enabled by small-molecular acceptors with a decreased fused-ring core. Small Methods, 2, 1700373(2018).

    [69] Y Un Kim, G Eun Park, S Choi et al. A new n-type semiconducting molecule with an asymmetric indenothiophene core for a high-performing non-fullerene type organic solar cell. J Mater Chem C, 5, 7182(2017).

    [70] Q Y Li, J Y Xiao, L M Tang et al. Thermally stable high performance non-fullerene polymer solar cells with low energy loss by using ladder-type small molecule acceptors. Org Electron, 44, 217(2017).

    [71] J Y Xiao, Z M Chen, G C Zhang et al. Efficient device engineering for inverted non-fullerene organic solar cells with low energy loss. J Mater Chem C, 6, 4457(2018).

    [72] Z J Kang, S C Chen, Y L Ma et al. Push-pull type non-fullerene acceptors for polymer solar cells: Effect of the donor core. ACS Appl Mater Interfaces, 9, 24771(2017).

    [73] Y Zhang, Y Wang, Z Y Xie et al. Preparation of non-fullerene acceptors with a multi-asymmetric configuration in a one-pot reaction for organic solar cells. J Mater Chem C, 8, 17229(2020).

    [74] D Q Hu, Q G Yang, Y J Zheng et al. 15.3% efficiency all-small-molecule organic solar cells achieved by a locally asymmetric F, Cl disubstitution strategy. Adv Sci, 8, 2004262(2021).

    [75] F Pan, X J Li, S Bai et al. High electron mobility fluorinated indacenodithiophene small molecule acceptors for organic solar cells. Chin Chem Lett, 32, 1257(2021).

    [76] H J Lai, H Chen, J D Zhou et al. 3D interpenetrating network for high-performance nonfullerene acceptors via asymmetric chlorine substitution. J Phys Chem Lett, 10, 4737(2019).

    [77] T J Aldrich, M Matta, W Zhu et al. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response. J Am Chem Soc, 141, 3274(2019).

    [78] M Li, Y Y Zhou, J Q Zhang et al. Tuning the dipole moments of nonfullerene acceptors with an asymmetric terminal strategy for highly efficient organic solar cells. J Mater Chem A, 7, 8889(2019).

    [79] B W Gao, H F Yao, J X Hou et al. Multi-component non-fullerene acceptors with tunable bandgap structures for efficient organic solar cells. J Mater Chem A, 6, 23644(2018).

    [80] L L Ye, Y P Xie, Y Q Xiao et al. Asymmetric fused-ring electron acceptor with two distinct terminal groups for efficient organic solar cells. J Mater Chem A, 7, 8055(2019).

    [81] H J Lai, H Chen, Y Shen et al. Using chlorine atoms to fine-tune the intermolecular packing and energy levels of efficient nonfullerene acceptors. ACS Appl Energy Mater, 2, 7663(2019).

    [82] J Y Zhang, W R Liu, S S Chen et al. One-pot synthesis of electron-acceptor composite enables efficient fullerene-free ternary organic solar cells. J Mater Chem A, 6, 22519(2018).

    [83] T N Duan, L C Hou, J H Fu et al. An asymmetric end-capping strategy enables a new non-fullerene acceptor for organic solar cells with efficiency over 10%. Chem Commun, 56, 6531(2020).

    [84] Y Zhao, Z H Luo, G H Li et al. De novo design of small molecule acceptors via fullerene/non-fullerene hybrids for polymer solar cells. Chem Commun, 54, 9801(2018).

    [85] S Y Feng, C E Zhang, Y H Liu et al. Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv Mater, 29, 1703527(2017).

    [86] S Y Feng, C Zhang, Z Z Bi et al. Controlling molecular packing and orientation via constructing a ladder-type electron acceptor with asymmetric substituents for thick-film nonfullerene solar cells. ACS Appl Mater Interfaces, 11, 3098(2019).

    [87] J Lee, S Song, J F Huang et al. Bandgap tailored nonfullerene acceptors for low-energy-loss near-infrared organic photovoltaics. ACS Mater Lett, 2, 395(2020).

    [88] X B Chen, B Kan, Y Y Kan et al. As-cast ternary organic solar cells based on an asymmetric side-chains featured acceptor with reduced voltage loss and 14.0% efficiency. Adv Funct Mater, 30, 1909535(2020).

    [89] X Z Liu, Y N Wei, X Zhang et al. An A-D-A'-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency. Sci China Chem, 64, 228(2021).

    [90] T Liu, Y D Zhang, Y M Shao et al. Asymmetric acceptors with fluorine and chlorine substitution for organic solar cells toward 16.83% efficiency. Adv Funct Mater, 30, 2000456(2020).

    [91] Z H Luo, R J Ma, T Liu et al. Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%. Joule, 4, 1236(2020).

    [92] J S Zhang, Y F Han, W X Zhang et al. High-efficiency thermal-annealing-free organic solar cells based on an asymmetric acceptor with improved thermal and air stability. ACS Appl Mater Interfaces, 12, 57271(2020).

    [93] F F Cai, C Zhu, J Yuan et al. Efficient organic solar cells based on a new "Y-series" non-fullerene acceptor with an asymmetric electron-deficient-core. Chem Commun, 56, 4340(2020).

    [94] F F Cai, H J Peng, H G Chen et al. An asymmetric small molecule acceptor for organic solar cells with a short circuit current density over 24 mA cm–2. J Mater Chem A, 8, 15984(2020).

    [95] M Zhang, W Gao, F J Zhang et al. Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76. 5%. Energy Environ Sci, 11, 841(2018).

    [96] C H Jeong, Y U Kim, C G Park et al. Improved performance of non-fullerene polymer solar cells by simple structural change of asymmetric acceptor based on indenothiophene. Synth Met, 246, 164(2018).

    Liu Ye, Weiyu Ye, Shiming Zhang. Recent advances and prospects of asymmetric non-fullerene small molecule acceptors for polymer solar cells[J]. Journal of Semiconductors, 2021, 42(10): 101607
    Download Citation