• High Power Laser Science and Engineering
  • Vol. 9, Issue 3, 03000e35 (2021)
Yulan Li1、2, Jie Ding1、2、*, Zhenxu Bai1、2、3, Xuezong Yang1、2、3, Yuqi Li1、2, Jingling Tang1、2, Yu Zhang1、2, Yaoyao Qi1、2, Yulei Wang1、2, and Zhiwei Lu1、2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin300401, China
  • 3MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
  • show less
    DOI: 10.1017/hpl.2021.25 Cite this Article Set citation alerts
    Yulan Li, Jie Ding, Zhenxu Bai, Xuezong Yang, Yuqi Li, Jingling Tang, Yu Zhang, Yaoyao Qi, Yulei Wang, Zhiwei Lu. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 2021, 9(3): 03000e35 Copy Citation Text show less
    Achieved output power of DRLs[8" target="_self" style="display: inline;">8,23" target="_self" style="display: inline;">23,28" target="_self" style="display: inline;">28–43" target="_self" style="display: inline;">43] compared with other crystalline Raman lasers[33" target="_self" style="display: inline;">33,44" target="_self" style="display: inline;">44–53" target="_self" style="display: inline;">53] and Raman fiber lasers[54" target="_self" style="display: inline;">54–61" target="_self" style="display: inline;">61].
    Fig. 1. Achieved output power of DRLs[8,23,2843] compared with other crystalline Raman lasers[33,4453] and Raman fiber lasers[5461].
    Schematic of the laser system consisting of a pumping Nd:YAP laser and DRL[66" target="_self" style="display: inline;">66].
    Fig. 2. Schematic of the laser system consisting of a pumping Nd:YAP laser and DRL[66].
    Schematic of the external cavity Raman laser[67" target="_self" style="display: inline;">67].
    Fig. 3. Schematic of the external cavity Raman laser[67].
    Schema of the external cavity DRL[31" target="_self" style="display: inline;">31.
    Fig. 4. Schema of the external cavity DRL[31.
    Layout of the external cavity DRL pumped with a Nd:YAG pulsed laser[40" target="_self" style="display: inline;">40].
    Fig. 5. Layout of the external cavity DRL pumped with a Nd:YAG pulsed laser[40].
    Experimental setup of the tunable (a) first-order and (b) second-order Stokes DRL operating in SLM[70" target="_self" style="display: inline;">70].
    Fig. 6. Experimental setup of the tunable (a) first-order and (b) second-order Stokes DRL operating in SLM[70].
    Spot distribution of pump and Stokes beams in DRLs[37" target="_self" style="display: inline;">37,83" target="_self" style="display: inline;">83,84" target="_self" style="display: inline;">84]: (a) pump spot distribution; (b) corresponding Stokes spot distribution.
    Fig. 7. Spot distribution of pump and Stokes beams in DRLs[37,83,84]: (a) pump spot distribution; (b) corresponding Stokes spot distribution.
    Schematic of a cascaded DRL pumped by a 1.06 μm laser[20" target="_self" style="display: inline;">20].
    Fig. 8. Schematic of a cascaded DRL pumped by a 1.06 μm laser[20].
    Different wave bands of DRLs and the related output spectra[7" target="_self" style="display: inline;">7,90" target="_self" style="display: inline;">90–92" target="_self" style="display: inline;">92]: (a) 573 nm and 620 nm laser output from 532 nm pump beam; (b) 275.7 nm laser output from 266 nm pump beam; (c) 3.38–3.8 μm laser output from 2.33–2.52 μm pump beam; (d) ∼2.53 μm laser output from 1.89 μm pump beam.
    Fig. 9. Different wave bands of DRLs and the related output spectra[7,9092]: (a) 573 nm and 620 nm laser output from 532 nm pump beam; (b) 275.7 nm laser output from 266 nm pump beam; (c) 3.38–3.8 μm laser output from 2.33–2.52 μm pump beam; (d) ∼2.53 μm laser output from 1.89 μm pump beam.
    High-power DRL pumped by Nd:YAG pulsed laser[107" target="_self" style="display: inline;">107]: (a) experimental setup of the DRL and output beam characteristics; (b) thermal lens strength as a function of Stokes output power.
    Fig. 10. High-power DRL pumped by Nd:YAG pulsed laser[107]: (a) experimental setup of the DRL and output beam characteristics; (b) thermal lens strength as a function of Stokes output power.
    TransmissionRamanRamanRamanThermalThermal
    rangeshiftlinewidthgain coefficientconductivityexpansion
    Material(μm)(cm−1)(cm−1)@1064 nm (cm/GW)(W·m−1·K−1)(×10−6 K−1)Ref.
    Diamond> 0.231332.31.510–1222001.1[79]
    Silicon> 1.15211.242.331562.62[1012]
    Ba(NO3)20.35–1.81047.30.4111.17[1315]
    YVO40.4–58903.04.55.24.43[1618]
    LilO30.38–5.5770, 8225.04.8428, 48[10,19,20]
    KGd(WO4)20.35–5.5768, 9017.8, 5.93.32.6 a, 3.8 b, 3.4 c4.0 a, 1.6 b, 8.5 c[10,21,22]
    Table 1. Comparison of parameters between diamond and several commonly used Raman gain materials.
    OperatingPumpRepetitionPumpCentralOutputStokes
    modepower (W)frequency (Hz)M2wavelength (μm)power (W)M2Ref.Year
    Pulse3.25000<1.51.4851.63<1.1[69]2011
    CW32-1.171.247.5<1.1[82]2011
    CW32-1. 71.2410.11.16[31]2012
    Quasi-CW50350003−41.48516.21.17[37]2014
    Quasi-CW32240<1.51.24108<1.1[42]2014
    Quasi-CW453407.31.241801.1[83]2018
    Quasi-CW823406.41.493021.1[84]2018
    Quasi-CW204401.50.62301.1[85]2018
    Quasi-CW230040151.2412302.95–1.25[40]2019
    Table 2. Optimization of beam quality of DRLs in recent years.
    Yulan Li, Jie Ding, Zhenxu Bai, Xuezong Yang, Yuqi Li, Jingling Tang, Yu Zhang, Yaoyao Qi, Yulei Wang, Zhiwei Lu. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 2021, 9(3): 03000e35
    Download Citation