• High Power Laser Science and Engineering
  • Vol. 9, Issue 3, 03000e35 (2021)
Yulan Li1、2, Jie Ding1、2、*, Zhenxu Bai1、2、3, Xuezong Yang1、2、3, Yuqi Li1、2, Jingling Tang1、2, Yu Zhang1、2, Yaoyao Qi1、2, Yulei Wang1、2, and Zhiwei Lu1、2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin300401, China
  • 3MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
  • show less
    DOI: 10.1017/hpl.2021.25 Cite this Article Set citation alerts
    Yulan Li, Jie Ding, Zhenxu Bai, Xuezong Yang, Yuqi Li, Jingling Tang, Yu Zhang, Yaoyao Qi, Yulei Wang, Zhiwei Lu. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 2021, 9(3): 03000e35 Copy Citation Text show less

    Abstract

    Stimulated Raman-scattering-based lasers provide an effective way to achieve wavelength conversion. However, thermally induced beam degradation is a notorious obstacle to power scaling and it also limits the applicable range where high output beam quality is needed. Considerable research efforts have been devoted to developing Raman materials, with diamond being a promising candidate to acquire wavelength-versatile, high-power, and high-quality output beam owing to its excellent thermal properties, high Raman gain coefficient, and wide transmission range. The diamond Raman resonator is usually designed as an external-cavity pumped structure, which can easily eliminate the negative thermal effects of intracavity laser crystals. Diamond Raman converters also provide an approach to improve the beam quality owing to the Raman cleanup effect. This review outlines the research status of diamond Raman lasers, including beam quality optimization, Raman conversion, thermal effects, and prospects for future development directions.
    $$\begin{align}n(r)={n}_0-\frac{1}{2}{n}_2{r}^2,\end{align}$$ ((1))

    View in Article

    $$\begin{align}{f}^{-1}={n}_2l,\end{align}$$ ((2))

    View in Article

    $$\begin{align}{f}^{-1}=\frac{P_{\mathrm{dep}}}{2\pi {{kw}}_0^2}\left[\frac{\mathrm{d}n}{\mathrm{d}T}+\left({n}_0-1\right)\left(v+1\right){a}_T+{n}_0^3\alpha {C}_{r,\phi}\right],\end{align}$$ ((3))

    View in Article

    $$\begin{align}\mathrm{Top}\hbox{-} \mathrm{hat}:r(x)=1.1-0.74x+1.22{x}^2,\end{align}$$ ((4))

    View in Article

    $$\begin{align}\mathrm{Gaussian}:r(x)=1+2{x}^2,\end{align}$$ ((5))

    View in Article

    $$\begin{align}{f}_{\mathrm{corr}}^{-1}=\frac{f^{-1}}{r(x)},\end{align}$$ ((6))

    View in Article

    $$\begin{align}\left(\frac{{{hv}}_{{R}}}{{{hv}}_{\mathrm{St}}}\right)\cdot {E}_{\mathrm{St}}=\left(\frac{1332\;{\mathrm{cm}}^{-1}}{8066\;{\mathrm{cm}}^{-1}}\right)\cdot {E}_{\mathrm{St}}=0.165\cdot {E}_{\mathrm{St}},\end{align}$$ ((7))

    View in Article

    $$\begin{align}{L}_d\sim {\left( D\tau \right)}^{\frac{1}{2}},\end{align}$$ ((8))

    View in Article

    $$\begin{align}\delta T(r)=0.165\times {E}_{\mathrm{St}}\times 2/\left(\pi \cdot {w}^2\cdot \rho \cdot l\cdot {C}_{\rho}\right)\times \exp\;\left(-\frac{2{r}^2}{w^2}\right).\end{align}$$ ((9))

    View in Article

    $$\begin{align}{F}_t^{-1}&=l\cdot \left[n\frac{\mathrm{d}n}{\mathrm{d}T}+\left(n-1\right)\alpha \right]\cdot \left(\frac{\mathrm{d}^2T}{{\mathrm{d}r}^2}\right)\notag\\&=0.66\cdot {E}_{\mathrm{St}}\cdot \left[n\frac{\mathrm{d}n}{\mathrm{d}T}+\left(n-1\right)\alpha \right]\left/\left(\pi \cdot {w}^4\cdot \rho \cdot {C}_{\rho}\right)\right..\end{align}$$ ((10))

    View in Article

    Yulan Li, Jie Ding, Zhenxu Bai, Xuezong Yang, Yuqi Li, Jingling Tang, Yu Zhang, Yaoyao Qi, Yulei Wang, Zhiwei Lu. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 2021, 9(3): 03000e35
    Download Citation