• Laser & Optoelectronics Progress
  • Vol. 54, Issue 12, 122703 (2017)
Zhu Zhuodan1、*, Zhang Xi2, Zhao Shanghong1, Su Lihua3, and Wang Xingyu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop54.122703 Cite this Article Set citation alerts
    Zhu Zhuodan, Zhang Xi, Zhao Shanghong, Su Lihua, Wang Xingyu. Measurement-Device-Independent Quantum Key Distribution Protocols for Heralded Pair Coherent State[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122703 Copy Citation Text show less
    References

    [1] Sheng Y B, Deng F G. Efficient quantum entanglement distribution over an arbitrary collective-noise channel[J]. Physical Review A, 2010, 81(4): 042332.

    [2] Bennett C H. Quantum cryptography: public key distribution and coin tossing[C]. IEEE International Conference on Computers Systems and Signal Processing, 1984: 175-179.

    [3] Das T, Prabhu R, De A S, et al. Distributed quantum dense coding with two receivers in noisy environments[J]. Physical Review A, 2015, 92(5): 052330.

    [4] Lo H K, Lütkenhaus N. Quantum cryptography: from theory to practice[J]. Physics in Canada, 2007, 63(4): 191-196.

    [5] Jiao Rongzhen, Tang Shaojie, Zhang Chao. Analysis of statistical fluctuation in decoy state quantum key distribution system[J]. Acta Physica Sinica, 2012, 61(5): 050302.

    [6] Liu Youming, Wang Chao, Huang Duan, et al. Study of synchronous technology in high-speed continuous variable quantum key distribution system[J]. Acta Optica Sinica, 2015, 35(1): 0106006.

    [7] Gottesman D, Lo H K, Lütkenhaus N, et al. Security of quantum key distribution with imperfect devices[C]. IEEE International Symposium on Information Theory, 2004: 8178599.

    [8] Sheng Y B, Zhou L, Cheng W W, et al. Complete Bell-state analysis for a single-photon hybrid entangled state[J]. Chinese Physics B, 2013, 22(3): 179-183.

    [9] Sun Ying, Zhao Shanghong, Dong Chen. Long distance measurement device independent quantum key distribution with quantum memories[J]. Acta Physica Sinica, 2015, 64(14): 140304.

    [10] Braunstein S L, Pirandola S. Measurement device independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 4089-4091.

    [11] Brassard G, Lutkenhaus N, Mor T, et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 2000, 85(6): 1330-1333.

    [12] Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Applied Physics Letters, 2012, 101(7): 175-179.

    [13] Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols[J]. Quantum Information & Computation, 2007, 8(6): 622-635.

    [14] Zhao Y, Fung C H F, Qi B,et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2007, 78(4): 4702-4705

    [15] Yuan Z L. Avoiding the blinding attack in QKD[J]. Nature Photonics, 2010, 4(12): 800-801.

    [16] Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses[J]. Physical Review A, 2004, 70(1): 012311.

    [17] Vazirani U, Vidick T. Device independent quantum key distribution[J]. Physics Review Letters, 2014, 113(14): 140501.

    [18] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503.

    [19] Sun Ying, Zhao Shanghong, Dong Chen. Passive measurement device independent quantum key distribution based on parametric downconversion source[J]. Acta Optica Sinica, 2015, 35(12): 1227001.

    [20] Sun Ying, Zhao Shanghong, Dong Chen. Measurement device independent quantum key distribution network based on quantum memory and entangled photon sources[J]. Acta Optica Sinica, 2016, 36(3): 0327001.

    [21] Ma X F, Fung C H F, Razavi M. Statistical fluctuation analysis for measurement-device-independent quantum key distribution[J]. Physical Review A, 2012, 86(5): 052305.

    [22] Sun S H, Gao M, Li C Y, et al. Practical decoy-state measurement-device-independent quantum key distribution[J]. Physical Review A, 2013, 87(5): 052329.

    [23] Yu Z W, Zhou Y H, Wang X B. Three-intensity decoy state method for device independent quantum key distribution[J]. Physical Review A, 2013, 88(6): 3869-3876.

    [24] Tang Z, Liao Z, Xu F, et al. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2014, 112(19): 190503.

    [25] Tang Y L, Yin H L, Chen S J, et al. Measurement-device-independent quantum key distribution over 200 km[J]. Physical Review Letters, 2014, 113(19): 190501.

    [26] Yuan C, Hao L, Juan Y, et al. Entanglement-based quantum key distribution with biased basis choice via free space[J]. Optics Express, 2013, 21(22): 27260-27268.

    [27] Adachi Y, Yamamoto T, Koachi M, et al. Simple and efficient quantum key distribution with parametric down-conversion[J]. Physical Review Letters, 99(18): 180503.

    [28] Horikiri T, Kobayashi T. Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion[J]. Physical Review A, 2004, 70(4): 628-628.

    [29] Zhou C, Bao W S, Chen W, et al. Phase-encoded measurement device independent quantum key distribution with practical spontaneous parametric-down-conversion sources[J]. Physical Review A, 2014, 88(5): 052333.

    [30] Wang Q, Wang X B. An efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources[J]. Physical Review A, 2013, 88(5): 052332.

    [31] Zhou C. Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensity fluctuations[J]. Science China Information Sciences, 2010, 53(12): 2485-2494.

    [32] Zhu F, Zhang C H, Liu A P, et al. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources[J]. Physics Letters A, 2016, 380(16): 1408-1413.

    [33] Zhou Yuanyuan, Zhang Heqing, Zhou Xuejun, et al. Performance analysis of decoy-state quantum key distribution with a heralded pair coherent state photon source[J]. Acta Physica Sinica, 2013, 62(20): 200302.

    [34] Ma X, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution[J]. Physical Review A, 2012, 86(6): 3818-3821.

    CLP Journals

    [1] He Yefeng, Song Chang, Li Dongqi, Kang Danna. Asymmetric-Channel Quantum Key Distribution Based on Heralded Single-Photon Sources[J]. Acta Optica Sinica, 2018, 38(3): 327001

    Zhu Zhuodan, Zhang Xi, Zhao Shanghong, Su Lihua, Wang Xingyu. Measurement-Device-Independent Quantum Key Distribution Protocols for Heralded Pair Coherent State[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122703
    Download Citation