• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0700001 (2023)
Shanghong Zhao*, Cong Peng, Yongjun Li, Hai Li, Xin Li, and Fengfeng Xue
Author Affiliations
  • Communication System Teaching and Research Section, School of Information and Navigation, Air Force Engineering University, Xi'an 710077, Shaanxi, China
  • show less
    DOI: 10.3788/LOP221390 Cite this Article Set citation alerts
    Shanghong Zhao, Cong Peng, Yongjun Li, Hai Li, Xin Li, Fengfeng Xue. Key Technology Progress of Next-Generation Satellite Optical Network for Satellite Internet[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0700001 Copy Citation Text show less
    References

    [1] Zhang G X, Wang Y F, Ding X J et al. Research on several key technologies of satellite Internet[J]. Journal on Communications, 42, 1-14(2021).

    [2] Pan C S, Liang Z M, Shi H F et al. Optimization algorithm of satellite network service function chain for concurrent services[J]. Computer Engineering, 47, 196-201(2021).

    [3] Wang W L, Li Y J, Zhao S H et al. Routing and wavelength assignment based on load balance for optical satellite network[J]. Laser & Optoelectronics Progress, 58, 0706004(2021).

    [4] Hao S W, Li Y J, Zhao S H et al. Optimal power allocation for intersatellite visible light communication based on nonorthogonal multiple access[J]. Chinese Journal of Lasers, 48, 0706002(2021).

    [5] Zhang Y, Wang H Q, Cao M H et al. Enhanced optical spatial modulation in wireless optical communication[J]. Acta Optica Sinica, 40, 0306001(2020).

    [6] Kim I I, Riley B, Wong N M et al. Lessons learned for STRV-2 satellite-to-ground lasercom experiment[J]. Proceedings of SPIE, 4272, 1-15(2001).

    [7] Landau E. OPALS boosts space-to-ground optical communications research[J]. NASA JPL News-Press Release, 14(2015).

    [8] Edwards B, Fletcher A. NASA’s LCRD, laser communications relay demonstration[EB/OL]. https://ntrs.nasa.gov/api/citations/20160000779/downloads/20160000779.pdf

    [9] Tolker-Nielsen T, Oppenhauser G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[J]. Proceedings of SPIE, 4635, 1-15(2002).

    [10] Singer T. Implementation of the true multi-mission control room at GSOC[C], 2454(2016).

    [11] Arimoto Y, Toyoshima M, Toyoda M et al. Preliminary result on laser communication experiment using Engineering Test Satellite-VI (ETS-VI)[J]. Proceedings of SPIE, 2381, 151-158(1995).

    [12] Jono T, Takayama Y, Ohinata K et al. Demonstrations of ARTEMIS-OICETS inter-satellite laser communications[C], 5461(2006).

    [13] Jiang Y, Yu L J, Wang Y et al. Design and on-orbit verification of GFDM-1 satellite flight program[J]. Spacecraft Engineering, 30, 94-101(2021).

    [14] Cui X. Analysis of key technologies and development trend of satellite optical communication[J]. Information and Communications Technology and Policy, 65-72(2021).

    [15] Carlson R T. Analog-modulated satellite laser crosslinks at 300 and 650 Mbps[J]. Proceedings of SPIE, 1866, 226-235(1993).

    [16] Nykolak G, Szajowski P F, Jacques J et al. 4×2.5 Gb/s 4.4 km WDM free-space optical link at 1550 nm[C], PD11(1999).

    [17] Szajowski P F, Nykolak G, Auborn J J et al. Key elements of high-speed WDM terrestrial free-space optical communications systems[J]. Proceedings of SPIE, 3932, 2-14(2000).

    [18] Koyama Y, Aizono M, Morikawa E et al. Evaluation of a high-power optical amplifier for intersatellite links[J]. Proceedings of SPIE, 4975, 164-171(2003).

    [19] Liu G. Research on the key technologies of networking in the NGSO satellite mobile communication systems[D], 20-29(2003).

    [20] Wood L[M]. Internetworking with satellite constellations(2001).

    [21] Song Y C, Xu X T, Song W T. Overview of the development of satellite mobile communication systems at home and abroad[J]. Telecommunications Information, 37-41(2019).

    [22] Collins M. The Iridium communications satellite: an artefact, system and history in the 1990s[J]. Showcasing Space, 6, 116-141(2005).

    [23] Li B. The second generation Iridium NEXT[J]. Satellite Application, 70(2017).

    [24] Guo X Y. SES to build 10 more than the “O3b enhancement” constellation[J]. Aerospace China, 43(2017).

    [25] Xiao C. New progress of OneWeb space Internet LEO constellation[J]. Satellite Application, 75-77(2016).

    [26] Yang W H, Hua G L, Feng Y et al. Analysis of the starlink satellite network filing application[J]. Space-Integrated-Ground Information Networks, 2, 60-68(2021).

    [27] Fang F, Wu M G. Development trend and analysis of “Starlink” LEO satellites constellation[J]. Journal of China Academy of Electronics and Information Technology, 16, 933-936(2021).

    [28] Gao D R, Xie Z, Ma R et al. Development Current status and trend analysis of satellite laser communication(invited)[J]. Acta Photonica Sinica, 50, 0406001(2021).

    [29] Xiao Q. The first experimental star of Hongyan constellation[J]. Satellite Application, 62(2019).

    [30] Jin L, Shu Y A. Research on load balancing of elephant flow based on SDN in data center network[J]. Application Research of Computers, 36, 203-205(2019).

    [31] Feng Z X, Sun W Q, Hu W S. Resource allocation mechanism in data center hybrid switching network[C], 33-35(2015).

    [32] Zhang T Y, Liu F Q. Traffic scheduling method in hybrid optical-electronical data centers based on SDN[J]. Optical Communication Technology, 42, 25-28(2018).

    [33] Ou Q H, Chen X, Liu Z et al. POTN multi-service routing mechanism for power communication network[J]. Electric Power Information and Communication Technology, 15, 1-6(2017).

    [34] Liu G J, Li H F, Qi Y X et al. Research on POTN service aggregation in optical communication network of electric power[J]. Optical Communication Technology, 42, 33-36(2018).

    [35] Li R X, Zhao S H, Yao Z S et al. Research of on-board mixed optical/electric switching of GEO broadband multimedia satellite[J]. Optical Communication Technology, 35, 51-53(2011).

    [36] Ding X F, Zhao S H, Li R X et al. Research on laser/RF/packets hybrid switching of space information network[J]. Optical Communication Technology, 41, 6-9(2017).

    [37] Zhao Z, Sun H W, Ma W. Multi-services oriented integrated switching architecture of satellite[J]. Space Electronic Technology, 14, 17-21(2017).

    [38] Li J L, Li J, Liang W et al. Design and processing method of satellite signaling with a mixed optical/electric switching capability[J]. Microelectronics & Computer, 35, 112-116(2018).

    [39] Zheng Y. Design and simulation of dynamic RWA algorithm with QoS and link protection mechanism[D], 11-55(2011).

    [40] Dong Y, Zhao S H, Ran H D et al. Routing and wavelength assignment in a satellite optical network based on ant colony optimization with the small window strategy[J]. Journal of Optical Communications and Networking, 7, 995-1000(2015).

    [41] Sun X, Cao S Z. Wavelength routing assignment of optical networks on two typical LEO satellite constellations[C](2018).

    [42] Wen G L, Zhang Q, Xin X J et al. Cross-layer design based ant colony optimization for routing and wavelength assignment in an optical satellite network[C](2016).

    [43] Sun X, Cao S Z. A routing and wavelength assignment algorithm based on two types of LEO constellations in optical satellite networks[J]. Journal of Lightwave Technology, 38, 2106-2113(2020).

    [44] Shi X D, Li Y J, Zhao S H et al. Ant colony optimization routing and wavelength technology for software-defined satellite optical networks[J]. Infrared and Laser Engineering, 49, 20200125(2020).

    [45] Tan L Y, Yang Q L, Ma J et al. Wavelength dimensioning of optical transport networks over nongeosychronous satellite constellations[J]. Journal of Optical Communications and Networking, 2, 166-174(2010).

    [46] Yang Q L, Tan L Y, Ma J et al. An analytic method of dimensioning required wavelengths for optical WDM satellite networks[J]. IEEE Communications Letters, 15, 247-249(2011).

    [47] Liu Z, Guo W, Deng C L et al. Wavelength dimensioning for wavelength-routed WDM satellite network[J]. Chinese Journal of Aeronautics, 29, 763-771(2016).

    [48] Liu X F, Yang L, Chen Q et al. An analytic method of wavelength requirements in dynamic optical satellite networks[J]. IEEE Communications Letters, 24, 2569-2573(2020).

    [49] Zhu H Y, Zang H, Zhu K Y et al. A novel generic graph model for traffic grooming in heterogeneous WDM mesh networks[J]. IEEE/ACM Transactions on Networking, 11, 285-299(2003).

    [50] Chiu A L, Modiano E H. Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks[J]. Journal of Lightwave Technology, 18, 2-12(2000).

    [51] Zhang S Q, Martel C, Mukherjee B. Dynamic traffic grooming in elastic optical networks[J]. IEEE Journal on Selected Areas in Communications, 31, 4-12(2013).

    [52] Zhu R J, Li S H, Wang P S et al. Energy-efficient deep reinforced traffic grooming in elastic optical networks for cloud-fog computing[J]. IEEE Internet of Things Journal, 8, 12410-12421(2021).

    [53] Dong T Y, Shen G X. Traffic grooming for IP over WDM optical satellite networks[C](2014).

    [54] Peng C, Zhao S H, Li R X et al. Separated traffic grooming for Low Earth Orbit (LEO) optical satellite networks with wavelength dimensioning[J]. International Journal of Satellite Communications and Networking, 38, 499-511(2020).

    [55] Peng C, Zhao S H, Li J et al. Provision of traffic grooming for distributed satellite cluster networks[J]. International Journal of Satellite Communications and Networking, 38, 557-574(2020).

    Shanghong Zhao, Cong Peng, Yongjun Li, Hai Li, Xin Li, Fengfeng Xue. Key Technology Progress of Next-Generation Satellite Optical Network for Satellite Internet[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0700001
    Download Citation