• Acta Optica Sinica
  • Vol. 40, Issue 13, 1329002 (2020)
Yufeng Yang1、2、**, Anli Han1、*, and Sichen Lei1、***
Author Affiliations
  • 1School of Automation & Information Engineering, Xi′an University of Technology, Xi′an, Shaanxi 710048, China;
  • 2Shaanxi Civil-Military Collaboration Key Laboratory of Intelligence Coodination Networks, Xi′an University of Technology, Xi′an, Shaanxi 710048, China
  • show less
    DOI: 10.3788/AOS202040.1329002 Cite this Article Set citation alerts
    Yufeng Yang, Anli Han, Sichen Lei. Simulation of Polarized Light Transmission Characteristics in Martian Dust Environment[J]. Acta Optica Sinica, 2020, 40(13): 1329002 Copy Citation Text show less
    References

    [1] Xu J, Ge B Z. Simulation and analysis of polarization properties of single particle light scattering[J]. Acta Optica Sinica, 39, 0429001(2019).

    [2] Mishchenko M I, Yurkin M A. On the concept of random orientation in far-field electromagnetic scattering by nonspherical particles[J]. Optics Letters, 42, 494-497(2017).

    [3] Tu X Z. Pau S K H. Optimized design of N optical filters for color and polarization imaging[J]. Optics Express, 24, 3011-3024(2016).

    [4] Plass G N, Kattawar G W. Degree and direction of polarization of multiple scattered light. 2: earth's atmosphere with aerosols[J]. Applied Optics, 11, 2866-2879(1972).

    [5] Kattawar G W, Plass G N. Degree and direction of polarization of multiple scattered light. 1: homogeneous cloud layers[J]. Applied Optics, 11, 2851-2865(1972).

    [6] Plass G N, Kattawar G W, Catchings F E. Matrix operator theory of radiative transfer. 1: Rayleigh scattering[J]. Applied Optics, 12, 314-329(1973).

    [7] Plass G N, Kattawar G W. Monte Carlo calculations of light scattering from clouds[J]. Applied Optics, 7, 415-419(1968).

    [8] Kattawar G W, Adams C N. Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization[J]. Limnology and Oceanography, 34, 1453-1472(1989).

    [9] Guo L L, Wang M J. Polarized radiative transfer characteristics of ice cloud atmospheres at large zenith angles[J]. Acta Optica Sinica, 39, 1101002(2019).

    [10] Cheng T H, Gu X F, Yu T et al. Multi-angular polarized radiation characteristics of water clouds[J]. Journal of Infrared and Millimeter Waves, 28, 267-271(2009).

    [11] Fernández J E, Bastiano M, Tartari A. Vector Monte Carlo for simulation of polarized photons[J]. X-Ray Spectrometry, 27, 325-331(1998).

    [12] Sun X M, Xiao S, Wan L et al. Monte Carlo simulation of polarization lidar multiple scattering by multi-layer discrete random media[J]. Chinese Journal of Lasers, 42, 1213001(2015).

    [13] Otsuki S. Forward scattering of polarized light from birefringent turbid slab media: Monte Carlo simulation[J]. Journal of The Optical Society of America A, 35, 406-416(2018).

    [14] Nemchinsky V, Khrabry A. Effect of polarization forces on carbon deposition on a non-spherical nanoparticle. Monte Carlo simulations[J]. Physics of Plasmas, 25, 023501(2018).

    [15] Wang J J, Liu X Y, Zhang Y T et al. Transmission characteristics of polarized light in aerosol[J]. Laser & Optoelectronics Progress, 55, 080103(2018).

    [16] Ye K T. Ji'E M, Zhai S J. Influence of particle shape on polarization characteristics of backscattering light in turbid media[J]. Chinese Journal of Lasers, 47, 0105004(2020).

    [17] Wang G C. Research on transmission characteristics of laser under complex atmospheric background Xi'an:[D]. Xidian University, 69-73(2007).

    [18] Hopcraft K I. Chang P C Y, Walker J G, et al. Properties of a polarized light-beam multiply scattered by a Rayleigh medium[M]//Light Scattering from Microstructures. Berlin, Heidelberg: Springer Berlin Heidelberg:, 135-158.

    [19] Yang L H, Ke X Z, Ma D D. Depolarization characteristics of the polarized laser in atmosphere[J]. Opto-Electronic Engineering, 35, 62-67(2008).

    [20] Wang L, Xu Z H, Feng H J. Monte Carlo simulation for diffuse backscattering of polarized light from poly-disperse highly dense media[J]. Acta Physica Sinica, 54, 2694-2698(2005).

    [21] Clancy R T, Lee S W, Gladstone G R et al. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos[J]. Journal of Geophysical Research Atmospheres, 100, 5251-5263(1995).

    [22] Tomasko M G, Doose L R, Lemmon M T et al. Properties of dust in the Martian atmosphere from the imager on Mars Pathfinder[J]. Journal of Geophysical Research, 104, 8987-9007(1999).

    [23] Pollack J B. Ockert-Bell M E, Shepard M K. Viking Lander image analysis of Martian atmospheric dust[J]. Journal of Geophysical Research Atmospheres, 100, 5235-5250(1995).

    [24] Fedorova A A, Montmessin F, Rodin A V et al. Evidence for a bimodal size distribution for the suspended aerosol particles on Mars[J]. Icarus, 231, 239-260(2014).

    [25] Yang Y F, Qin J H, Wang Z L. Influence of Martian dust aerosol on laser transmission characteristics[J]. Acta Photonica Sinica, 47, 0329001(2018).

    [26] Merrison J P, Gunnlaugsson H P, Jensen J et al. A miniature laser anemometer for measurement of wind speed and dust suspension on Mars[J]. Planetary and Space Science, 52, 1177-1186(2004).

    Yufeng Yang, Anli Han, Sichen Lei. Simulation of Polarized Light Transmission Characteristics in Martian Dust Environment[J]. Acta Optica Sinica, 2020, 40(13): 1329002
    Download Citation