• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 2, 172 (2021)
Weimin HAN1、2、*, Youbao NI1, Haixin WU1、2, Zhenyou WANG1, and Changbao HUANG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.02.005 Cite this Article
    HAN Weimin, NI Youbao, WU Haixin, WANG Zhenyou, HUANG Changbao. Growth of a new long-wave infrared material PbGa6Te10[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 172 Copy Citation Text show less
    References

    [1] Shen D Y, Fan D Y. Mid-Infrared Laser (Modern Laser Technology and Application Series)[M]. Beijing: National Defense Industry Press, 2015: 2-10.

    [2] Chen H. The average transmittance of the common infrared atmospheric window spectrum passband[J]. Laser and Infrared, 1979, 1: 1-3.

    [3] Chen Y, Liu G Y, Wang R X, et al. Research progress of nonlinear crystals applied to infrared solid-state lasers[J]. Journal of Synthetic Crystals, 2020, 49(8): 1379-1395.

    [4] Wang Z Y, Wu H X. Research progress of nonlinear crystals for 8~12μm long-wave IR generation[J]. Journal of Synthetic Crystals, 2019, 48(1): 34-53.

    [5] Wu H X, Huang F, Ni Y B, et al. Growth and properties of mid- and far-IR nonlinear crystal material CdSe[J]. Chinese Journal of Quantum Electronics, 2010, 27(6): 711-715.

    [6] Ni Y B, Han W M, Wu H X, et al. Growth and application of large size far infrared CdSe nonlinear crystal[J]. Journal of Synthetic Crystals, 2020, 49(8): 1488-1489.

    [7] Avanesov S A, Badikov D V, Badikov V V, et al. Phase equilibrium studies in the PbTe-Ga2Te3 and PbTe-In2Te3 systems for growing new nonlinear optical crystals of PbGa6Te10 and PbIn6Te10 with transparency extending into the far-IR[J]. Journal of Alloys and Compounds, 2014, 612: 386-391.

    [8] Jia N, Wang S P, Tao X T. Research progress of mid- and far-infrared nonlinear optical crystals[J]. Acta Physica Sinica, 2018, 67(24): 244203.

    [9] Li T, Nan R H, Jian Z Y, et al. Investigation on the optical evaluation mechanism of In-doped CdTe/CdZnTe crystals[J]. Journal of Chemical Research, 2019, 30(2): 159-164.

    [10] Yang R. Study on Crystal Growth, Performance Characterization and Defects of ZnTe[D]. Xi’an: Northwestern Polytechnical University, 2015.

    [11] Schunemann P G, Setzler S D, Pollak T M, et al. Crystal growth and properties of AgGaTe2[J]. Journal of Crystal Growth, 2000, 211: 242-246.

    [12] Wang S P, Liu G D, Shi Q, et al. Synthesis and crystal growth of novel infrared nonlinear optical crystal LiGaTe2[J]. Journal of Synthetic Crystals, 2011, 40(4): 822-828.

    [13] Isaenko L, Krinitsin P, Vedenyapin V, et al. LiGaTe2: A new highly nonlinear chalcopyrite optical crystal for the mid-IR[J]. Crystal Growth and Design, 2005, 4: 1325-1329.

    [14] Dedegkaev T T, Duguzhev S M, Zhukova T B, et al. The PbTe-Ga2Te3 system near PbGa6Te10[J]. Inorganic Materials, 1986, 22(10): 1526-1528.

    [15] Deiseroth H J, Muller H D. Structural relations in the family of nonmetallic filled β-manganese phases: The new members AGa6Te10(A: Sn, Pb) and PbIn6Te10[J]. Zeitschrift Fur Anorganische Und All gemeine Chemie, 1996, 622(3): 405-410.

    [16] Kienle L, Deiseroth H J. SnAl6Te10, SnGa6Te10 and PbGa6Te10: Superstructures, symmetry relations and structural chemistry of filled β-manganese phases[J]. Zeitschrift Fur Kristallographie, 1998, 213: 569-574.

    [17] Kityk I V, Parasyuk O, Fedorchuk A O, et al. PbGa6Te10 crystals for IR laser operated piezoelectricity[J]. Materials Research Bulletin, 2018, 100: 131-137.

    [18] Cheng W D, Lin C S, Zhang H, et al. Theoretical evaluation on terahertz source generators from ternary metal chalcogenides of PbM6Te10 (M = Ga,In)[J]. Journal of Physical Chemistry, 2018, 122: 4557-4564.

    [19] Butler M A. Photoelectrolysis and physical properties of the semiconducting electrode WO2[J]. Journal of Applied Physics, 1997, 48(5): 1914-1920.

    HAN Weimin, NI Youbao, WU Haixin, WANG Zhenyou, HUANG Changbao. Growth of a new long-wave infrared material PbGa6Te10[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 172
    Download Citation