• Photonics Research
  • Vol. 6, Issue 1, 12 (2018)
Juan Wei1、2、†, Dohyeon Kwon1、†, Shuangyou Zhang1, Shilong Pan2、3, and Jungwon Kim1、*
Author Affiliations
  • 1School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
  • 2Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China
  • 3e-mail: pans@nuaa.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000012 Cite this Article Set citation alerts
    Juan Wei, Dohyeon Kwon, Shuangyou Zhang, Shilong Pan, Jungwon Kim. All-fiber-photonics-based ultralow-noise agile frequency synthesizer for X-band radars[J]. Photonics Research, 2018, 6(1): 12 Copy Citation Text show less
    References

    [1] P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, A. Bogoni. A fully photonics-based coherent radar system. Nature, 507, 341-345(2014).

    [2] J. D. McKinney. Photonics illuminates the future of radar. Nature, 507, 310-312(2014).

    [3] I. S. Merrill. Introduction to Radar Systems(2001).

    [4] J. R. Vig. Introduction to quartz frequency standards(1992).

    [5] J. Taylor. Effects of crystal reference oscillator phase noise in a vibratory environment(1980).

    [6] D. B. Leeson. Oscillator phase noise: a 50-year review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63, 1208-1225(2016).

    [7] M. Jankovic. Phase noise in microwave oscillators and amplifiers(2010).

    [8] G. Krieger, M. Younis. Impact of oscillator noise in bistatic and multistatic SAR. IEEE Geosci. Remote Sens. Lett., 3, 424-428(2006).

    [9] T. Pollet, M. Vanbladel, M. Moeneclaey. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Trans. Commun., 43, 191-193(1995).

    [10] A. G. Armada. Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM). IEEE Trans. Broadcast., 47, 153-159(2001).

    [11] M. Jamil, H.-J. Zepernick, M. I. Pettersson. On integrated radar and communication systems using Oppermann sequences. IEEE Military Communications Conference, 1-6(2008).

    [12] G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, S. M. Hagewood. The advanced multifunction RF concept. IEEE Trans. Microwave Theory Tech., 53, 1009-1020(2005).

    [13] J. A. Molnar, I. Corretjer, G. Tavik. Integrated topside-integration of narrowband and wideband array antennas for shipboard communications. IEEE Military Communications Conference, 1802-1807(2011).

    [14] P. H. Zhao. The technologies of multifunction integrated RF system. Radar ECM, 3, 9-13(2011).

    [15] L. Peruzzi. Integrated masts and EW: present and future solutions in Europe. J. Electron. Def., 37, 24-26(2014).

    [16] C. Sturm, T. Zwick, W. Wiesbeck. An OFDM system concept for joint radar and communications operations. IEEE Vehicular Technology Conference, 1-5(2009).

    [17] Y. L. Sit, C. Sturm, L. Reichardt, T. Zwick, W. Wiesbeck. The OFDM joint radar-communication system: an overview. 3rd International Conference on Advances in Satellite and Space Communications, 69-74(2011).

    [18] R. A. Poisel. Introduction to Communication Electronic Warfare Systems(2008).

    [19] A. R. Hunt. Use of a frequency-hopping radar for imaging and motion detection through walls. IEEE Trans. Geosci. Remote Sens., 47, 1402-1408(2009).

    [20] C. Y. Chen, P. P. Vaidyanathan. MIMO radar ambiguity properties and optimization using frequency-hopping waveforms. IEEE Trans. Signal Process., 56, 5926-5936(2008).

    [21] P. Ghelfi, F. Scotti, F. Laghezza, A. Bogoni. Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems. IEEE J. Quantum Electron., 48, 1151-1157(2012).

    [22] M. I. Skolnik. Radar Handbook(2008).

    [23] T. Sun, L. Zhang, A. K. Poddar, U. L. Rohde, A. S. Daryoush. Frequency synthesis of forced opto-electronic oscillators at the X-band. Chin. Opt. Lett., 15, 010009(2017).

    [24] L. Hoover, H. Griffith, K. DeVries. Low noise X-band exciter using a sapphire loaded cavity oscillator. IEEE International Frequency Control Symposium, 309-311(2008).

    [25] T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, S. A. Diddams. Optically referenced broadband electronic synthesizer with 15 digits of resolution. Laser Photon. Rev., 10, 780-790(2016).

    [26] D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, J. Kim. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Sci. Rep., 7, 40917(2017).

    [27] K. Jung, J. Kim. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave. Sci. Rep., 5, 16250(2015).

    [28] L. Duan. Intrinsic thermal noise of optical fibers due to mechanical dissipation. Electron. Lett., 46, 1515-1516(2010).

    [29] K. H. Wanser. Fundamental phase noise limit in optical fibers due to temperature fluctuations. Electron. Lett., 28, 53-54(1992).

    [30] T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, S. A. Diddams. Photonic microwave generation with high-power photodiodes. Opt. Lett., 38, 1712-1714(2013).

    [31] K. Jung, J. Kim. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. Opt. Lett., 37, 2958-2960(2012).

    [32] K. Jung, J. Shin, J. Kim. Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter. IEEE Photon. J., 5, 1-7(2013).

    [33] T. J. Endres, R. B. Hall, A. M. Lopez. Design and analysis methods of a DDS-based synthesizer for military spaceborne applications. IEEE International Frequency Control Symposium, 624-632(1994).

    [34] B. G. Anderson. Frequency switching time measurement using digital demodulation. IEEE Trans. Instrum. Meas., 39, 353-357(1990).

    [35] D. Brandon. Determining if a spur is related to the DDS/DAC or to some other source.

    [36] A. Chenakin. Frequency synthesis: current solutions and new trends. Microwave J., 50, 256-260(2007).

    [37] M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, M. Vossiek. Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors- I: context and application. IEEE Trans. Circuits Syst. I, 54, 1006-1017(2007).

    [38] A. Lewandowski, K. Kucy, D. Startek. High-speed DDS-based generator of pulses with an arbitrary frequency modulation. International Conference on Microwaves, Radar & Wireless Communications, 125-128(2006).

    [39] C. Cook. Radar Signals: An Introduction to Theory and Application(2012).

    [40] W. Y. Z. Zhimin. Effect of LFM signal flatness on pulse compression performance. Radar Sci. Technol., 2, 100-103(2003).

    [41] D. Kwon, J. Kim. All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1-s. Opt. Lett., 309718.

    Juan Wei, Dohyeon Kwon, Shuangyou Zhang, Shilong Pan, Jungwon Kim. All-fiber-photonics-based ultralow-noise agile frequency synthesizer for X-band radars[J]. Photonics Research, 2018, 6(1): 12
    Download Citation