• Acta Optica Sinica
  • Vol. 42, Issue 19, 1916002 (2022)
Xiaohang Sheng1、2, Shaodong Zhou1, Kelei Xi1, Qingqing Cheng1、*, and Yang Wang2、**
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Research Laboratory for High Density Optical Storage, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/AOS202242.1916002 Cite this Article Set citation alerts
    Xiaohang Sheng, Shaodong Zhou, Kelei Xi, Qingqing Cheng, Yang Wang. Multi-Order Refractive Index Thin-Film Flat Lens Based on Phase Change Materials[J]. Acta Optica Sinica, 2022, 42(19): 1916002 Copy Citation Text show less
    References

    [1] Yu D Y, Tan H Y[M]. Engineering optics(2015).

    [2] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [3] Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano letters, 12, 5750-5755(2012).

    [4] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [5] Sun S L, He Q, Hao J M et al. High-efficiency manipulations on electromagnetic waves with metasurfaces[J]. Acta Optica Sinica, 41, 0123003(2021).

    [6] Ni Y B, Wen S, Shen Z C et al. Multidimensional light field sensing based on metasurfaces[J]. Chinese Journal of Lasers, 48, 1918003(2021).

    [7] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [8] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [9] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [10] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).

    [11] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [12] Huang L, Chen X, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013).

    [13] Fan Z B, Qiu H Y, Zhang H L et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light: Science & Applications, 8, 67(2019).

    [14] Zhao F, Chen X N, Wang D C. Metalens design and simulation for simultaneous focusing of orthogonal circularly polarized light[J]. Acta Optica Sinica, 40, 1024001(2020).

    [15] Wang P, Mohammad N, Menon R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing[J]. Scientific Reports, 6, 21545(2016).

    [16] Meem M, Banerji S, Majumder A et al. Broadband lightweight flat lenses for long-wave infrared imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 21375-21378(2019).

    [17] Banerji S, Sensale-Rodriguez B. A computational design framework for efficient, fabrication error-tolerant, planar THz diffractive optical elements[J]. Scientific Reports, 9, 5801(2019).

    [18] Banerji S, Meem M, Majumder A et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 6, 805-810(2019).

    [19] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage[J]. Nature Materials, 6, 824-832(2007).

    [20] Lankhorst M H R, Ketelaars B W S M M, Wolters R A M. Low-cost and nanoscale non-volatile memory concept for future silicon chips[J]. Nature Materials, 4, 347-352(2005).

    [21] Wright C D, Hosseini P, Diosdado J A V. Beyond von-Neumann computing with nanoscale phase-change memory devices[J]. Advanced Functional Materials, 23, 2248-2254(2013).

    [22] Lü Y S, Wang C G, Yuan W et al. Reconfigurable mode multiplexer waveguide switch based on phase change material[J]. Acta Optica Sinica, 41, 1723001(2021).

    [23] Wang Q, Rogers E T F, Gholipour B et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 10, 60-65(2016).

    [24] Huang H, Zuo F Y, Zhai F X et al. Fast phase transition process of Ge2Sb2Te5 film induced by picosecond laser pulses with identical fluences[J]. Journal of Applied Physics, 106, 063501(2009).

    [25] Liang G F, Li S M, Huang H et al. Comparison of optical transients during the picosecond laser pulse-induced crystallization of GeSbTe and AgInSbTe phase-change thin films: nucleation-driven versus growth-driven processes[J]. Physica B, 424, 1-7(2013).

    [26] Wen S, Meng Y, Jiang M et al. Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films[J]. Scientific Reports, 8, 4979(2018).

    [27] Julian M N, Williams C, Borg S et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging[J]. Optica, 7, 746-754(2020).

    [28] Williams C, Hong N N, Julian M et al. Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe[J]. Optics Express, 28, 10583-10594(2020).

    [29] Ovshinsky S R. Ovonic chalcogenide non-binary electrical and optical devices[J]. Proceedings of SPIE, 5966, 596601(2005).

    [30] Aieta F, Genevet P, Kats M et al. Aberrations of flat lenses and aplanatic metasurfaces[J]. Optics Express, 21, 31530-31539(2013).

    Xiaohang Sheng, Shaodong Zhou, Kelei Xi, Qingqing Cheng, Yang Wang. Multi-Order Refractive Index Thin-Film Flat Lens Based on Phase Change Materials[J]. Acta Optica Sinica, 2022, 42(19): 1916002
    Download Citation