• Advanced Photonics
  • Vol. 2, Issue 1, 014001 (2020)
Xueqian Zhang1, Quan Xu1、*, Lingbo Xia1, Yanfeng Li1, Jianqiang Gu1, Zhen Tian1, Chunmei Ouyang1, Jiaguang Han1、*, and Weili Zhang2、*
Author Affiliations
  • 1Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
  • 2Oklahoma State University, School of Electrical and Computer Engineering, Stillwater, Oklahoma, United States
  • show less
    DOI: 10.1117/1.AP.2.1.014001 Cite this Article Set citation alerts
    Xueqian Zhang, Quan Xu, Lingbo Xia, Yanfeng Li, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Jiaguang Han, Weili Zhang. Terahertz surface plasmonic waves: a review[J]. Advanced Photonics, 2020, 2(1): 014001 Copy Citation Text show less
    References

    [1] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26-33(2002).

    [2] S. L. Dexheimer. Terahertz Spectroscopy: Principles and Applications(2007).

    [3] X.-C. Zhang, J. Xu. Introduction to THz Wave Photonics(2010).

    [4] R. J. Hwu et al. Security applications of terahertz technology. Proc. SPIE, 5070, 44-52(2003).

    [5] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [6] D. Saeedkia. Handbook of Terahertz Technology for Imaging, Sensing and Communications(2013).

    [7] T. Nagatsuma et al. Terahertz wireless communications based on photonics technologies. Opt. Express, 21, 23736-23747(2013).

    [8] I. F. Akyildiz, J. M. Jornet, C. Han. Terahertz band: next frontier for wireless communications. Phys. Commun., 12, 16-32(2014).

    [9] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).

    [10] H. T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [11] S. B. Glybovski et al. Metasurfaces: from microwaves to visible. Phys. Rep.-Rev. Sect. Phys. Lett., 634, 1-72(2016).

    [12] W. Withayachumnankul, D. Abbott. Metamaterials in the terahertz regime. IEEE Photonics J., 1, 99-118(2009).

    [13] D. M. Wu et al. Terahertz plasmonic high pass filter. Appl. Phys. Lett., 83, 201(2003).

    [14] X. Zhang et al. Bilayer-fish-scale ultrabroad terahertz bandpass filter. Opt. Lett., 37, 906-908(2012).

    [15] J. F. O’Hara et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt. Express, 16, 1786-1795(2008).

    [16] L. Cong et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl. Phys. Lett., 106, 031107(2015).

    [17] Y. K. Srivastava et al. Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett., 115, 151105(2019).

    [18] T. C. Tan, E. Plum, R. Singh. Surface lattice resonances in THz metamaterials. Photonics, 6, 75(2019).

    [19] H. Tao et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express, 16, 7181-7188(2008).

    [20] X. Shen et al. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl. Phys. Lett., 101, 154102(2012).

    [21] L. Huang, H.-T. Chen. A brief review on terahertz metamaterial perfect absorbers. Terahertz Sci. Technol., 6, 26-39(2013).

    [22] H. T. Chen et al. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [23] J. Gu et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [24] Y. Zhang et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett., 15, 3501-3506(2015).

    [25] H. T. Chen et al. A metamaterial solid-state terahertz phase modulator. Nat. Photonics, 3, 148-151(2009).

    [26] A. Kumar et al. Color-sensitive ultrafast optical modulation and switching of terahertz plasmonic devices. Adv. Opt. Mater., 6, 1800030(2018).

    [27] L. Q. Cong et al. A perfect metamaterial polarization rotator. Appl. Phys. Lett., 103, 171107(2013).

    [28] L. Q. Cong et al. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser Photonics Rev., 8, 626-632(2014).

    [29] D. Hu et al. Ultrathin terahertz planar elements. Adv. Opt. Mater., 1, 186-191(2013).

    [30] Q. Wang et al. A broadband metasurface-based terahertz flat-lens array. Adv. Opt. Mater., 3, 779-785(2015).

    [31] H. F. Zhang et al. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation. Adv. Opt. Mater., 6, 1700773(2018).

    [32] Q. Cheng et al. Broadband achromatic metalens in terahertz regime. Sci. Bull., 64, 1525-1531(2019).

    [33] H. Zhang et al. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime. Photonics Res., 6, 24-29(2018).

    [34] J. He et al. Generation and evolution of the terahertz vortex beam. Opt. Express, 21, 20230-20239(2013).

    [35] Q. Wang et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci. Rep., 6, 32867(2016).

    [36] Q. Wang et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl., 7, 25(2018).

    [37] X. Liu et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface. Adv. Opt. Mater., 7, 1900175(2019).

    [38] B. Orazbayev et al. Terahertz carpet cloak based on a ring resonator metasurface. Phys. Rev. B, 91, 195444(2015).

    [39] M. Wei et al. Ultrathin metasurface-based carpet cloak for terahertz wave. Opt. Express, 25, 15635-15642(2017).

    [40] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [41] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [42] J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors: review. Sens. Actuators B-Chem., 54, 3-15(1999).

    [43] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737-748(2012).

    [44] M. Ayata et al. High-speed plasmonic modulator in a single metal layer. Science, 358, 630-632(2017).

    [45] T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi. Surface-plasmon circuitry. Phys. Today, 61, 44-50(2008).

    [46] K. Wang, D. M. Mittleman. Metal wires for terahertz wave guiding. Nature, 432, 376-379(2004).

    [47] J. Saxler et al. Time-domain measurements of surface plasmon polaritons in the terahertz frequency range. Phys. Rev. B, 69, 155427(2004).

    [48] N. C. J. van der Valk, P. C. M. Planken. Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires. Appl. Phys. Lett., 87, 071106(2005).

    [49] T. Akalin, A. Treizebre, B. Bocquet. Single-wire transmission lines at terahertz frequencies. IEEE Trans. Microwave Theory Tech., 54, 2762-2767(2006).

    [50] C. R. Williams et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat. Photonics, 2, 175-179(2008).

    [51] J. G. Rivas et al. Propagation of surface plasmon polaritons on semiconductor gratings. Phys. Rev. Lett., 93, 256804(2004).

    [52] C. H. Gan, H. S. Chu, E. P. Li. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys. Rev. B, 85, 125431(2012).

    [53] B. H. Ng et al. Spoof plasmon surfaces: a novel platform for THz sensing. Adv. Opt. Mater., 1, 543-548(2013).

    [54] C. Russell et al. Spectroscopy of polycrystalline materials using thinned-substrate planar Goubau line at cryogenic temperatures. Lab Chip, 13, 4065-4070(2013).

    [55] S. Ummethala et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics, 13, 519-524(2019).

    [56] A. Sommerfeld. Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes. Ann. Phys., 303, 233-290(1899).

    [57] J. Zenneck. Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys., 328, 846-866(1907).

    [58] E. Kretschmann, H. Raether. Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A, 23, 2135-2136(1968).

    [59] T. W. Ebbesen et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [60] D. Qu, D. Grischkowsky, W. Zhang. Terahertz transmission properties of thin, subwavelength metallic hole arrays. Opt. Lett., 29, 896-898(2004).

    [61] H. Cao, A. Nahata. Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures. Opt. Express, 12, 1004-1010(2004).

    [62] A. K. Azad, W. Zhang. Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness. Opt. Lett., 30, 2945-2947(2005).

    [63] G. Goubau. Surface waves and their application to transmission lines. J. Appl. Phys., 21, 1119(1950).

    [64] T. I. Jeon, D. Grischkowsky. THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet. Appl. Phys. Lett., 88, 061113(2006).

    [65] K. L. Wang, D. M. Mittleman. Guided propagation of terahertz pulses on metal wires. J. Opt. Soc. Am. B-Opt. Phys., 22, 2001-2008(2005).

    [66] K. Wang, D. M. Mittleman. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range. Phys. Rev. Lett., 96, 157401(2006).

    [67] T. I. Jeon, J. Q. Zhang, D. Grischkowsky. THz Sommerfeld wave propagation on a single metal wire. Appl. Phys. Lett., 86, 161904(2005).

    [68] Z. Schlesinger, A. Sievers. IR surface-plasmon attenuation coefficients for Ge-coated Ag and Au metals. Phys. Rev. B, 26, 6444-6454(1982).

    [69] K. W. Steijn, R. J. Seymour, G. I. Stegeman. Attenuation of far-infrared surface plasmons on overcoated metal. Appl. Phys. Lett., 49, 1151(1986).

    [70] M. Gong, T. I. Jeon, D. Grischkowsky. THz surface wave collapse on coated metal surfaces. Opt. Express, 17, 17088-17101(2009).

    [71] V. V. Gerasimov et al. Growth of terahertz surface plasmon propagation length due to thin-layer dielectric coating. J. Opt. Soc. Am. B-Opt. Phys., 33, 2196-2203(2016).

    [72] G. Goubau. Single-conductor surface-wave transmission lines. Proc. IRE, 39, 619-624(1951).

    [73] D. R. Grischkowsky et al. Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines. IEEE J. Quantum Electron., 24, 221-225(1988).

    [74] M. Ketchen et al. Generation of subpicosecond electrical pulses on coplanar transmission lines. Appl. Phys. Lett., 48, 751(1986).

    [75] M. Nagel et al. A functionalized THz sensor for marker-free DNA analysis. Phys. Med. Biol., 48, 3625-3636(2003).

    [76] Y. Kadoya. THz wave propagation on strip lines: devices, properties, and applications, 1-4(2007).

    [77] A. Treizebre, T. Akalin, B. Bocquet. Planar excitation of Goubau transmission lines for THz BioMEMS. IEEE Microwave Wireless Compon. Lett., 15, 886-888(2005).

    [78] A. Treizebre et al. New THz excitation of planar Goubau line. Microwave Opt. Technol. Lett., 50, 2998-3001(2008).

    [79] D. R. Grischkowsky. Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron., 6, 1122-1135(2000).

    [80] D. L. Mills, A. A. Maradudin. Surface corrugation and surface-polariton binding in the infrared frequency range. Phys. Rev. B, 39, 1569-1574(1989).

    [81] J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [82] L. F. Shen et al. Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires. Phys. Rev. B, 77, 075408(2008).

    [83] D. Martin-Cano et al. Domino plasmons for subwavelength terahertz circuitry. Opt. Express, 18, 754-764(2010).

    [84] L. B. Kong et al. Enhancing spoof surface-plasmons with gradient metasurfaces. Sci. Rep., 5, 8772(2015).

    [85] J. Duan et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci. Rep., 7, 1354(2017).

    [86] J. Gómez Rivas et al. Enhanced transmission of THz radiation through subwavelength holes. Phys. Rev. B, 68, 201306(2003).

    [87] J. Gómez Rivas et al. Low-frequency active surface plasmon optics on semiconductors. Appl. Phys. Lett., 88, 082106(2006).

    [88] E. Hendry et al. Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture. Phys. Rev. Lett., 100, 123901(2008).

    [89] W. Zhang et al. Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect. Phys. Rev. Lett., 98, 183901(2007).

    [90] J. Chochol et al. Experimental demonstration of magnetoplasmon polariton at InSb(InAs)/dielectric interface for terahertz sensor application. Sci. Rep., 7, 13117(2017).

    [91] L. B. Xia et al. Terahertz surface magnetoplasmons modulation with magnetized InSb hole array sheet. Opt. Commun., 446, 84-87(2019).

    [92] S. Savel’ev, V. Yampol’skii, F. Nori. Surface Josephson plasma waves in layered superconductors. Phys. Rev. Lett., 95, 187002(2005).

    [93] S. Savel’ev, V. Yampol’skii, F. Nori. THz detectors using surface Josephson plasma waves in layered superconductors. Physica C: Supercond. Appl., 445–448, 183-185(2006).

    [94] S. Savel’ev et al. Terahertz Josephson plasma waves in layered superconductors: spectrum, generation, nonlinear and quantum phenomena. Rep. Prog. Phys., 73, 026501(2010).

    [95] A. Y. Nikitin et al. Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B, 84, 161407(R)(2011).

    [96] X. Y. He, J. Tao, B. Meng. Analysis of graphene TE surface plasmons in the terahertz regime. Nanotechnology, 24, 345203(2013).

    [97] G. Kumar et al. Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. New J. Phys., 15, 085031(2013).

    [98] B. A. Knyazev et al. Generation of terahertz surface plasmon polaritons using nondiffractive bessel beams with orbital angular momentum. Phys. Rev. Lett., 115, 163901(2015).

    [99] Y. Zhang et al. Terahertz spoof surface-plasmon-polariton subwavelength waveguide. Photonics Res., 6, 18-23(2018).

    [100] L. Dazhang et al. On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors. Appl. Phys. Lett., 95, 092903(2009).

    [101] J. O’Hara, R. Averitt, A. Taylor. Prism coupling to terahertz surface plasmon polaritons. Opt. Express, 13, 6117-6126(2005).

    [102] J. O’Hara, R. Averitt, A. Taylor. Terahertz surface plasmon polariton coupling on metallic gratings. Opt. Express, 12, 6397-6402(2004).

    [103] M. Wachter, M. Nagel, H. Kurz. Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires. Opt. Express, 13, 10815-10822(2005).

    [104] Z. Zheng et al. Efficient coupling of propagating broadband terahertz radial beams to metal wires. Opt. Express, 21, 10642-10650(2013).

    [105] S. Tokita et al. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses. Sci. Rep., 5, 8268(2015).

    [106] V. V. Gerasimov et al. A way to determine the permittivity of metallized surfaces at terahertz frequencies. Appl. Phys. Lett., 98, 171912(2011).

    [107] V. V. Gerasimov et al. Surface plasmon polaritons launched using a terahertz free-electron laser: propagation along a gold-ZnS–air interface and decoupling to free waves at the surface edge. J. Opt. Soc. Am. B, 30, 2182-2190(2013).

    [108] S. G. Liu et al. Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam. Appl. Phys. Lett., 104, 201104(2014).

    [109] C. Russell et al. Integrated on-chip THz sensors for fluidic systems fabricated using flexible polyimide films. IEEE Trans. Terahertz Sci. Technol., 6, 619-624(2016).

    [110] N. Hunter et al. On-chip picosecond pulse detection and generation using graphene photoconductive switches. Nano Lett., 15, 1591-1596(2015).

    [111] K. L. Wang, A. Barkan, D. M. Mittleman. Propagation effects in apertureless near-field optical antennas. Appl. Phys. Lett., 84, 305(2004).

    [112] A. J. L. Adam. Review of near-field terahertz measurement methods and their applications how to achieve sub-wavelength resolution at THz frequencies. J. Infrared Millimeter Terahertz Waves, 32, 976-1019(2011).

    [113] N. C. J. van der Valk, T. Wenckebach, P. C. M. Planken. Full mathematical description of electro-optic detection in optically isotropic crystals. J. Opt. Soc. Am. B, 21, 622-631(2004).

    [114] S. Pandey et al. Direct observation of Anderson localization in plasmonic terahertz devices. Light Sci. Appl., 6, e16232(2017).

    [115] D. Gacemi et al. THz surface plasmon modes on planar Goubau lines. Opt. Express, 20, 8466-8471(2012).

    [116] S. Wang et al. Comprehensive imaging of terahertz surface plasmon polaritons. Opt. Express, 22, 16916-16924(2014).

    [117] S. Wang et al. Observation and explanation of polarization-controlled focusing of terahertz surface plasmon polaritons. Phys. Rev. A, 91, 053812(2015).

    [118] Y. H. Xu et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces. Appl. Phys. Lett., 107, 021105(2015).

    [119] A. Bitzer, M. Walther. Terahertz near-field imaging of metallic subwavelength holes and hole arrays. Appl. Phys. Lett., 92, 231101(2008).

    [120] M. Wachter, M. Nagel, H. Kurz. Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution. Appl. Phys. Lett., 95, 041112(2009).

    [121] S. Chen et al. Empowered layer effects and prominent properties in few-layer metasurfaces. Adv. Opt. Mater., 7, 1801477(2019).

    [122] S. M. Kamali et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).

    [123] Q. He et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [124] Z. Gao et al. Spoof plasmonics: from metamaterial concept to topological description. Adv. Mater., 30, 1706683(2018).

    [125] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [126] I. Epstein, Y. Tsur, A. Arie. Surface-plasmon wavefront and spectral shaping by near-field holography. Laser Photonics Rev., 10, 360-381(2016).

    [127] T. V. Teperik et al. Huygens-Fresnel principle for surface plasmons. Opt. Express, 17, 17483-17490(2009).

    [128] S. Wang et al. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons. Appl. Phys. Lett., 107, 243504(2015).

    [129] X. Zhang et al. Anomalous surface wave launching by handedness phase control. Adv. Mater., 27, 7123-7129(2015).

    [130] X. Zang et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv. Opt. Mater., 7, 1801328(2018).

    [131] Q. Xu et al. Polarization-controlled surface plasmon holography. Laser Photonics Rev., 11, 1600212(2017).

    [132] X. Zhang et al. Asymmetric excitation of surface plasmons by dark mode coupling. Sci. Adv., 2, e1501142(2016).

    [133] Q. Xu et al. Polarization-controlled asymmetric excitation of surface plasmons. Optica, 4, 1044-1051(2017).

    [134] T. Tanemura et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. Nano Lett., 11, 2693-2698(2011).

    [135] D. Wintz et al. Holographic metalens for switchable focusing of surface plasmons. Nano Lett., 15, 3585-3589(2015).

    [136] A. K. Azad et al. Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays. Opt. Lett., 31, 2637-2639(2006).

    [137] J. G. Han et al. Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies. Appl. Phys. Lett., 91, 071122(2007).

    [138] Q. Yang et al. Near-field surface plasmons on quasicrystal metasurfaces. Sci. Rep., 6, 26(2016).

    [139] Q. Yang et al. Transmission and plasmonic resonances on quasicrystal metasurfaces. Opt. Express, 25, 24173-24182(2017).

    [140] J. Lin et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331-334(2013).

    [141] Y. Xu et al. Tunable on-chip sources with aperiodic metasurface. Ann. Phys., 531, 1900237(2019).

    [142] M. Wei et al. Multi-wavelength lenses for terahertz surface wave. Opt. Express, 25, 24872-24879(2017).

    [143] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 20, 569-572(2003).

    [144] S. Wonjoo, W. Zheng, F. Shanhui. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511-1518(2004).

    [145] C. Qu et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys. Rev. Lett., 115, 235503(2015).

    [146] H. Zhang et al. Coherent control of optical spin-to-orbital angular momentum conversion in metasurface. Adv. Mater., 29, 1604252(2017).

    [147] Q. Xu et al. Coupling-mediated selective spin-to-plasmonic-orbital angular momentum conversion. Adv. Opt. Mater., 7, 1900713(2019).

    [148] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [149] S. Liu et al. Full-state controls of terahertz waves using tensor coding metasurfaces. ACS Appl. Mater. Interfaces, 9, 21503-21514(2017).

    [150] C. Qu et al. A theoretical study on the conversion efficiencies of gradient meta-surfaces. Europhys. Lett., 101, 54002(2013).

    [151] Q. Xu et al. Efficient metacoupler for complex surface plasmon launching. Adv. Opt. Mater., 6, 1701117(2018).

    [152] M. R. Yuan et al. High-performance and compact broadband terahertz plasmonic waveguide intersection. Nanophotonics, 8, 1811-1819(2019).

    [153] S. A. Maier et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett., 97, 176805(2006).

    [154] A. I. Fernandez-Dominguez et al. Spoof surface plasmon polariton modes propagating along periodically corrugated wires. IEEE J. Sel. Top. Quantum Electron., 14, 1515-1521(2008).

    [155] S. Laurette, A. Treizebre, B. Bocquet. Corrugated Goubau lines to slow down and confine THz waves. IEEE Trans. Terahertz Sci. Technol., 2, 340-344(2012).

    [156] A. K. Horestani et al. Metamaterial-inspired bandpass filters for terahertz surface waves on Goubau lines. IEEE Trans. Terahertz Sci. Technol., 3, 851-858(2013).

    [157] T. Zhang et al. On-chip THz dynamic manipulation based on tunable spoof surface plasmon polaritons. IEEE Electron Device Lett., 40, 1844-1847(2019).

    [158] T. Zhang et al. Efficient THz on-chip absorption based on destructive interference between complementary meta-atom pairs. IEEE Electron Device Lett., 40, 1013-1016(2019).

    [159] X. Y. Xiong et al. Surface plasmon mediated controllable spin-resolved transmission in meta-hole structures. Ann. Phys., 530, 1700364(2018).

    [160] Q. Gan et al. Bidirectional subwavelength slit splitter for THz surface plasmons. Opt. Express, 15, 18050-18055(2007).

    [161] N. Yu et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nat. Mater., 9, 730-735(2010).

    [162] A. Agrawal, H. Cao, A. Nahata. Time-domain analysis of enhanced transmission through a single subwavelength aperture. Opt. Express, 13, 3535-3542(2005).

    [163] J. Q. Gu et al. An active hybrid plasmonic metamaterial. Opt. Mater. Express, 2, 31-37(2012).

    [164] Z. Tian et al. Terahertz superconducting plasmonic hole array. Opt. Lett., 35, 3586-3588(2010).

    [165] J. Wu et al. Extraordinary terahertz transmission in superconducting subwavelength hole array. Opt. Express, 19, 1101-1106(2011).

    [166] T. H. Isaac, W. L. Barnes, E. Hendry. Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons. Appl. Phys. Lett., 93, 241115(2008).

    [167] J. G. Han, X. C. Lu, W. L. Zhang. Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer. J. Appl. Phys., 103, 033108(2008).

    [168] B. H. Ng et al. Broadband terahertz sensing on spoof plasmon surfaces. ACS Photonics, 1, 1059-1067(2014).

    [169] J. J. Zhang et al. Integrated spoof plasmonic circuits. Sci. Bull., 64, 843-855(2019).

    [170] R. S. Anwar, H. S. Ning, L. F. Mao. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digital Commun. Networks, 4, 244-257(2018).

    [171] X. Shen et al. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. U. S. A., 110, 40-45(2013).

    [172] H. F. Ma et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev., 8, 146-151(2014).

    [173] H. C. Zhang et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev., 9, 83-90(2015).

    [174] Z. Wang et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [175] L. Xia et al. Stretchable photonic ‘Fermi Arcs’ in twisted magnetized plasma. Laser Photonics Rev., 12, 1700226(2018).

    [176] L. Xia et al. Observation of hourglass nodal lines in photonics. Phys. Rev. Lett., 122, 103903(2019).

    [177] B. Yang et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 359, 1013-1016(2018).

    [178] Q. Guo et al. Three dimensional photonic dirac points in metamaterials. Phys. Rev. Lett., 119, 213901(2017).

    [179] Y. Yang et al. Realization of a three-dimensional photonic topological insulator. Nature, 565, 622-626(2019).

    [180] D. Wang et al. Photonic Weyl points due to broken time-reversal symmetry in magnetized semiconductor. Nat. Phys., 15, 1150-1155(2019).

    [181] Y. Yang et al. Terahertz topological photonics for on-chip communication(2019).

    CLP Journals

    [1] Quan Xu, Xiaoqiang Su, Xueqian Zhang, Lijuan Dong, Lifeng Liu, Yunlong Shi, Qiu Wang, Ming Kang, Andrea Alù, Shuang Zhang, Jiaguang Han, Weili Zhang. Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves[J]. Advanced Photonics, 2022, 4(1): 016002

    [2] Qiang Zhang, Zhenwei Xie, Peng Shi, Hui Yang, Hairong He, Luping Du, Xiaocong Yuan. Optical topological lattices of Bloch-type skyrmion and meron topologies[J]. Photonics Research, 2022, 10(4): 947

    Xueqian Zhang, Quan Xu, Lingbo Xia, Yanfeng Li, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Jiaguang Han, Weili Zhang. Terahertz surface plasmonic waves: a review[J]. Advanced Photonics, 2020, 2(1): 014001
    Download Citation