• Advanced Photonics Nexus
  • Vol. 2, Issue 4, 044001 (2023)
Kunping Guo1、2、*, Zhe Tang1, Xingxing Chou3, Saihu Pan4, Chunchen Wan1, Tao Xue1, Liping Ding1, Xiao Wang1, Jin Huang1, Fanghui Zhang1、*, and Bin Wei5、*
Author Affiliations
  • 1Shaanxi University of Science and Technology, School of Electronic Information and Artificial Intelligence, Xi’an, China
  • 2University College London, Department Physics and Astronomy and London Centre for Nanotechnology, London, United Kingdom
  • 3Shaanxi University of Science and Technology, School of Electrical and Control Engineering, Xi’an, China
  • 4Changzhou University, School of Microelectronics and Control Engineering, Changzhou, China
  • 5Shanghai University, Ministry of Education, Key Laboratory of Advanced Display and System Applications, Shanghai, China
  • show less
    DOI: 10.1117/1.APN.2.4.044001 Cite this Article Set citation alerts
    Kunping Guo, Zhe Tang, Xingxing Chou, Saihu Pan, Chunchen Wan, Tao Xue, Liping Ding, Xiao Wang, Jin Huang, Fanghui Zhang, Bin Wei. Printable organic light-emitting diodes for next-generation visible light communications: a review[J]. Advanced Photonics Nexus, 2023, 2(4): 044001 Copy Citation Text show less
    References

    [1] H. Bronstein et al. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem., 4, 66-77(2020).

    [2] G. P. Neupane et al. 2D organic semiconductors, the future of green nanotechnology. Nano Mater. Sci., 1, 246-259(2019).

    [3] K. Guo et al. Non-toxic near-infrared light-emitting diodes. iScience, 24, 102545(2021).

    [4] Y. Li et al. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nat. Commun., 12, 5419(2021).

    [5] C. F. Liu et al. Organic light-emitting field-effect transistors: device geometries and fabrication techniques. Adv. Mater., 30, 1802466(2018).

    [6] A. Zampetti, A. Minotto, F. Cacialli. Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities. Adv. Funct. Mater., 29, 1807623(2019).

    [7] K. Guo et al. Stable green phosphorescence organic light-emitting diodes with low efficiency roll-off using a novel bipolar thermally activated delayed fluorescence material as host. Chem. Sci., 8, 1259-1268(2017).

    [8] S. Pan et al. Switching the resistive memory behavior from binary to ternary logic via subtle polymer donor and molecular acceptor design. J. Mater. Chem. C, 9, 5643-5651(2021).

    [9] Y. Huang et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl., 9, 1-16(2020).

    [10] K. Pei. Recent advances in molecular doping of organic semiconductors. Surf. Interfaces, 30, 101887(2022).

    [11] X. Zhang et al. Facile brush-coated β-phase poly(9,9-dioctylfluorene) films for efficient and stable pure-blue polymer light-emitting diodes. Org. Electron., 75, 105380(2019). https://doi.org/10.1016/j.orgel.2019.105380

    [12] L. Zhou et al. Inkjet-printed small-molecule organic light-emitting diodes: halogen-free inks, printing optimization, and large-area patterning. ACS Appl. Mater. Interfaces, 9, 40533-40540(2017).

    [13] L. Zhou et al. Mayer rod-coated organic light-emitting devices: binary solvent inks, film topography optimization, and large-area fabrication. Adv. Eng. Mater., 24, 2101558(2022).

    [14] S. Chin. Fiere electronics(2019).

    [15] S. Brodsky. Google glass update: helpful or privacy issue?(2020).

    [16] M. K. Choi et al. Flexible quantum dot light-emitting diodes for next-generation displays. NPJ Flex. Electron., 2, 1-14(2018).

    [17] H. Song et al. Water stable and matrix addressable OLED fiber textiles for wearable displays with large emission area. NPJ Flex. Electron., 6, 1-8(2022).

    [18] S. Choi et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci. Rep., 7, 6424(2017).

    [19] P. A. Haigh et al. Organic visible light communications: recent progress, 1-5(2014).

    [20] S. R. Teli, S. Zvanovec, Z. Ghassemlooy. Optical internet of things within 5G: Applications and challenges, 40-45(2018).

    [21] Z. N. Chaleshtori et al. Coverage of a shopping mall with flexible OLED-based visible light communications. Opt. Express, 28, 10015-10026(2020).

    [22] K. Yoshida et al. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun., 11, 1171(2020).

    [23] H. Chun et al. A wide-area coverage 35 Gb/s visible light communications link for indoor wireless applications. Sci. Rep., 9, 1-8(2019).

    [24] W. Ding et al. A hybrid power line and visible light communication system for indoor hospital applications. Comput Ind., 68, 170-178(2015).

    [25] O. U. Kurtulus. New trends and functionalities in automotive tail lighting, 31-38(2021).

    [26] E. Agrell et al. Roadmap of optical communications. J. Opt., 18, 063002(2016).

    [27] L.-M. Cosovanu, A. Done. Development of visible light communication system for automotive applications based on organic light emitting diode panels, 84-89(2020).

    [28] J.-X. Wang et al. Metal–organic frameworks in mixed-matrix membranes for high-speed visible-light communication. J. Am. Chem. Soc., 144, 6813-6820(2022).

    [29] S. Wilkinson. Electroluminescent quantum dots are coming sooner than you think(2019).

    [30] J. Zhou, J. Huang. Photodetectors based on organic–inorganic hybrid lead halide perovskites. Adv. Sci., 5, 1700256(2018).

    [31] B. Zhang, Y. Liu. A review of GaN-based optoelectronic devices on silicon substrate. Chin. Sci. Bull., 59, 1251-1275(2014).

    [32] L. Krieg et al. Toward three-dimensional hybrid inorganic/organic optoelectronics based on GaN/oCVD-PEDOT structures. Nat. Commun., 11, 5092(2020).

    [33] R. X. Ferreira et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technol. Lett., 28, 2023-2026(2016).

    [34] L. Wang et al. 1.3 GHz EO bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photonics Res., 9, 792-802(2021).

    [35] D. Tsonev et al. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photonics Technol. Lett., 26, 637-640(2014).

    [36] M. S. Islim et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photonics Res., 5, A35-A43(2017).

    [37] V. Coropceanu et al. Charge transport in organic semiconductors. Chem. Rev., 107, 926-952(2007).

    [38] W. Brütting. Introduction to the physics of organic semiconductors. Physics of Organic Semiconductors, 1-14(2005).

    [39] H. Tsai et al. Critical role of organic spacers for bright 2D layered perovskites light-emitting diodes. Adv. Sci., 7, 1903202(2020).

    [40] Y. Xu et al. Recent progress in hot exciton materials for organic light-emitting diodes. Chem. Soc. Rev., 50, 1030-1069(2021).

    [41] T. Lee et al. Bright and stable quantum dot light-emitting diodes. Adv. Mater., 34, 2106276(2022).

    [42] S. Pan et al. Decrease of intermolecular interactions for less-doped efficient deep blue monomer light-emitting diodes. Org. Electron., 78, 105577(2020).

    [43] A. Facchetti. Semiconductors for organic transistors. Mater. Today., 10, 28-37(2007).

    [44] K. Guo et al. High-efficiency near ultraviolet and blue organic light-emitting diodes using star-shaped material as emissive and hosting molecules. J. Disp. Technol., 10, 642-646(2014).

    [45] S. Sohn et al. Printed organic light-emitting diodes on fabric with roll-to-roll sputtered ITO Anode and poly (vinyl alcohol) planarization layer. ACS Appl. Mater. Interfaces, 13, 28521-28528(2021).

    [46] C. W. Tang, S. A. VanSlyke. Organic electroluminescent diodes. Appl. Phys. Lett., 51, 913-915(1987).

    [47] R. Pode. Organic light emitting diode devices: an energy efficient solid state lighting for applications. Renew. Sust. Energ. Rev., 133, 110043(2020).

    [48] Z. N. Chaleshtori et al. A survey on recent advances in organic visible light communications, 1-6(2018).

    [49] Q. Sun et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics, 1, 717-722(2007).

    [50] S. M. Mustafa et al. Biosynthesis of quantum dots and their usage in solar cells: insight from the novel researches. Int. Nano Lett., 12, 139-151(2022).

    [51] M. F. Leitao et al. Gb/s visible light communications with colloidal quantum dot color converters. IEEE J. Sel. Top. Quantum Electron., 23, 1-10(2017).

    [52] R. Wang et al. Opportunities and challenges of lead-free perovskite optoelectronic devices. Trends Chem., 1, 368-379(2019).

    [53] B. Zhao et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics, 12, 783-789(2018).

    [54] Z.-K. Tan et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol., 9, 687-692(2014).

    [55] K. Lin et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562, 245-248(2018).

    [56] W. Xu et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics, 13, 418-424(2019).

    [57] Z. Liu et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater., 33, 2103268(2021).

    [58] A. Fuhr et al. Spectroscopic and magneto-optical signatures of Cu1+ and Cu2+ defects in copper indium sulfide quantum dots. ACS Nano, 14, 2212-2223(2020).

    [59] F. Yuan et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-Emitting diodes. Adv. Mater., 29, 1604436(2017).

    [60] S. Yan et al. Synthesis of 0D manganese-based organic–inorganic hybrid perovskite and its application in lead-free red light-emitting diode. Adv. Funct. Mater., 31, 2100855(2021).

    [61] D. Volz et al. From iridium and platinum to copper and carbon: new avenues for more sustainability in organic light-emitting diodes. Green Chem., 17, 1988-2011(2015).

    [62] D. Volz. Review of organic light-emitting diodes with thermally activated delayed fluorescence emitters for energy-efficient sustainable light sources and displays. J. Photonics Energy, 6, 020901(2016).

    [63] J. Jin et al. Chitin nanofiber transparent paper for flexible green electronics. Adv. Mater., 28, 5169-5175(2016).

    [64] J. Barsotti et al. Ultrathin, ultra-conformable, and free-standing tattooable organic light-emitting diodes. Adv. Electron. Mater., 7, 2001145(2021).

    [65] Y. Jeon et al. Parallel-stacked flexible organic light-emitting diodes for wearable photodynamic therapeutics and color-tunable optoelectronics. ACS Nano, 14, 15688-15699(2020).

    [66] L. Zhou et al. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes. ACS Nano, 8, 12796-12805(2014).

    [67] S. Lee et al. Organic light-emitting diodes: the mechanism of charge generation in charge-generation units composed of p-doped hole-transporting layer/HATCN/n-doped electron-transporting layers. Adv. Funct. Mater., 22, 879-879(2012).

    [68] X.-K. Liu et al. Novel blue fluorophor with high triplet energy level for high performance single-emitting-layer fluorescence and phosphorescence hybrid white organic light-emitting diodes. Chem. Mater., 25, 4454-4459(2013).

    [69] C. Cao et al. Bipolar blue host emitter with unity quantum yield allows full exciton radiation in single-emissive-layer hybrid white organic light-emitting diodes. ACS Appl. Mater. Interfaces, 11, 11691-11698(2019).

    [70] J. Zhao et al. White OLEDs with an EQE of 21% at 5000 cd m−2 and ultra high color stability based on exciplex host. Adv. Opt. Mater., 6, 1800825(2018).

    [71] X. Hong et al. TADF molecules with π-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes. Chem, 8, 1705-1719(2022).

    [72] D. Luo et al. Extremely simplified, high-performance, and doping-free white organic light-emitting diodes based on a single thermally activated delayed fluorescent emitter. ACS Energy Lett., 3, 1531-1538(2018).

    [73] M. Ma et al. Rational utilization of intramolecular hydrogen bonds to achieve blue TADF with EQEs of nearly 30% and single emissive layer All-TADF WOLED. ACS Appl. Mater. Interfaces, 13, 44615-44627(2021).

    [74] J. X. Chen et al. Thermally activated delayed fluorescence warm white organic light emitting devices with external quantum efficiencies over 30%. Adv. Funct. Mater., 31, 2101647(2021).

    [75] M. C. Gather, A. Köhnen, K. Meerholz. White organic light-emitting diodes. Adv. Mater., 23, 233-248(2011).

    [76] J. Song et al. Organic light-emitting diodes: pushing toward the limits and beyond. Adv. Mater., 32, 1907539(2020).

    [77] A. Salehi et al. Highly efficient organic light-emitting diode using a low refractive index electron transport layer. Adv. Opt. Mater., 5, 1700197(2017).

    [78] J. Hu et al. Realizing improved performance of down-conversion white organic light-emitting diodes by localized surface plasmon resonance effect of Ag nanoparticles. Org. Electron., 31, 234-239(2016).

    [79] W. Ji et al. Top-emitting white organic light-emitting devices with a one-dimensional metallic-dielectric photonic crystal anode. Opt. Lett., 34, 2703-2705(2009).

    [80] C. Bronnbauer et al. Semitransparent organic light emitting diodes with bidirectionally controlled emission. ACS Photonics, 3, 1233-1239(2016).

    [81] M. Punke et al. Optical data link employing organic light-emitting diodes and organic photodiodes as optoelectronic components. J. Lightwave Technol., 26, 816-823(2008).

    [82] H. Le Minh et al. Equalization for organic light emitting diodes in visible light communications, 828-832(2011).

    [83] P. A. Haigh et al. Visible light communications: real time 10 Mb/s link with a low bandwidth polymer light-emitting diode. Opt. Express, 22, 2830-2838(2014).

    [84] H. Chen et al. A 51.6 Mb/s experimental VLC system using a monochromic organic LED. IEEE Photonics J., 10, 1-12(2017).

    [85] N. Bamiedakis et al. High-bandwidth organic light emitting diodes for ultra-low cost visible light communication links(2018).

    [86] P. A. Haigh et al. Experimental demonstration of staggered CAP modulation for low bandwidth red-emitting polymer-LED based visible light communications, 1-6(2019).

    [87] A. Minotto et al. Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes. Light Sci. Appl., 9, 1-11(2020).

    [88] M. Shibata, Y. Sakai, D. Yokoyama. Advantages and disadvantages of vacuum-deposited and spin-coated amorphous organic semiconductor films for organic light-emitting diodes. J. Mater. Chem. C, 3, 11178-11191(2015).

    [89] Y. Zhang, J. Lee, S. R. Forrest. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat. Commun., 5, 5008(2014).

    [90] T.-H. Yeh et al. Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes. Org. Electron., 59, 266-271(2018). https://doi.org/10.1016/j.orgel.2018.05.014

    [91] T. Dobbertin et al. OLED matrix displays: in-line process technology and fundamentals. Thin Solid Films, 442, 132-139(2003).

    [92] M. Böberl et al. Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths. Adv. Mater., 19, 3574-3578(2007).

    [93] F. Villani et al. Inkjet printed polymer layer on flexible substrate for OLED applications. J. Phys. Chem. C, 113, 13398-13402(2009).

    [94] Z. Zhan et al. Inkjet-printed optoelectronics. Nanoscale, 9, 965-993(2017).

    [95] B. H. Kim et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano, 10, 4920-4925(2016).

    [96] L. Zhou et al. Screen-printed poly (3, 4-Ethylenedioxythiophene): poly (Styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes. Adv. Funct. Mater., 28, 1705955(2018).

    [97] D. Li et al. Post-treatment of screen-printed silver nanowire networks for highly conductive flexible transparent films. Adv. Mater. Interfaces, 8, 2100548(2021).

    [98] R. S. Cok et al. Inorganic light-emitting diode displays using micro-transfer printing. J. Soc. Inf. Disp., 25, 589-609(2017).

    [99] M. Singh et al. Inkjet printing—process and its applications. Adv. Mater., 22, 673-685(2010).

    [100] A. Sandström et al. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun., 3, 1002(2012).

    [101] H.-C. Yeh et al. All-small-molecule efficient white organic light-emitting diodes by multi-layer blade coating. Org. Electron., 13, 914-918(2012).

    [102] X. Liu et al. Iridium(III)-complexed polydendrimers for inkjet-printing OLEDs: the influence of solubilizing steric hindrance groups. ACS Appl. Mater. Interfaces, 11, 26174-26184(2019).

    [103] L. Kinner et al. Inkjet-printed embedded Ag-PEDOT: PSS electrodes with improved light out coupling effects for highly efficient ITO-free blue polymer light emitting diodes. Appl. Phys. Lett., 110, 101107(2017).

    [104] F. Hermerschmidt et al. High performance indium tin oxide-free solution-processed organic light emitting diodes based on inkjet-printed fine silver grid lines. Flex. Print. Electron., 1, 035004(2016).

    [105] S. M. Pozov et al. Up-scalable ITO-free organic light emitting diodes based on embedded inkjet-printed copper grids. Flex. Print. Electron., 4, 025004(2019).

    [106] H. Zhu et al. Printable semiconductors for backplane TFTs of flexible OLED displays. Adv. Funct. Mater., 30, 1904588(2020).

    [107] L. Zhou et al. In-depth investigation of inkjet-printed silver electrodes over large-area: ink recipe, flow, and solidification. Adv. Mater. Interfaces, 9, 2102548(2022).

    [108] D. Soltman, V. Subramanian. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir, 24, 2224-2231(2008).

    [109] Y. Liu et al. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique. ACS Appl. Mater. Interfaces, 9, 25506-25512(2017).

    [110] D. Han et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors. Adv. Mater., 29, 1606206(2017).

    [111] R. Su et al. 3D-printed flexible organic light-emitting diode displays. Sci. Adv., 8, eabl8798(2022).

    [112] M. Colella et al. Slot-die coating of double polymer layers for the fabrication of organic light emitting diodes. Micromachines, 10, 53(2019).

    [113] S. Raupp et al. Slot die coated and flexo printed highly efficient SMOLEDs. Adv. Mater. Technol., 2, 1600230(2017).

    [114] K.-J. Choi et al. Multilayer slot-die coating of large-area organic light-emitting diodes. Org. Electron., 26, 66-74(2015).

    [115] S.-R. Tseng et al. Multilayer polymer light-emitting diodes by blade coating method. Appl. Phys. Lett., 93, 153308(2008).

    [116] J. Y. Seok, M. Yang. A novel blade-jet coating method for achieving ultrathin, uniform film toward all-solution-processed large-area organic light-emitting diodes. Adv. Mater. Technol., 1, 1600029(2016).

    [117] F. Guo et al. The fabrication of color-tunable organic light-emitting diode displays via solution processing. Light Sci. Appl., 6, e17094-e17094(2017).

    [118] H.-W. Chang et al. ITO-free large-area top-emission organic light-emitting diode by blade coating. Synth. Metals, 212, 19-24(2016).

    [119] M. R. Hartings, Z. Ahmed. Chemistry from 3D printed objects. Nat. Rev. Chem., 3, 305-314(2019).

    [120] Z. Zhu et al. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater., 6, 27-47(2021).

    [121] A. N. Solodov et al. High-throughput, low-cost and “green” production method for highly stable polypropylene/perovskite composites, applicable in 3D printing. Addit. Manuf., 59, 103094(2022).

    [122] J. Kwon et al. Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun., 10, 54(2019).

    [123] G. Haghiashtiani et al. 3D printed patient-specific aortic root models with internal sensors for minimally invasive applications. Sci. Adv., 6, eabb4641(2020).

    [124] X. Ouyang et al. 3D printed skin-interfaced UV-visible hybrid photodetectors. Adv. Sci., 9, 2201275(2022).

    [125] C. Eder, M. Rank, A. Heinrich. Additive manufactured organic light-emitting diodes. Proc. SPIE, 11277, 1127705(2020).

    [126] E. M. Hutter et al. Metal halide perovskite toxicity effects on Arabidopsis thaliana plants are caused by iodide ions. iScience, 25, 103583(2022).

    [127] P. A. Haigh et al. A 1-Mb/s visible light communications link with low bandwidth organic components. IEEE Photonics Technol. Lett., 26, 1295-1298(2014).

    [128] C. Vega-Colado et al. An all-organic flexible visible light communication system. Sensors, 18, 3045(2018).

    [129] C.-W. Chow et al. Pre-distortion scheme to enhance the transmission performance of organic photo-detector (OPD) based visible light communication (VLC). IEEE Access, 6, 7625-7630(2018).

    [130] I. Tavakkolnia et al. Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications. Light Sci. Appl., 10, 41(2021).

    [131] S. Cho et al. Small molecule based organic photo signal receiver for high-speed optical wireless communications. Adv. Sci., 9, 2203715(2022).

    Kunping Guo, Zhe Tang, Xingxing Chou, Saihu Pan, Chunchen Wan, Tao Xue, Liping Ding, Xiao Wang, Jin Huang, Fanghui Zhang, Bin Wei. Printable organic light-emitting diodes for next-generation visible light communications: a review[J]. Advanced Photonics Nexus, 2023, 2(4): 044001
    Download Citation