• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 6, 2230009 (2022)
Hui Li1, Min Wei1, Xinyi Lv1, Yanling Hu1, Jinjun Shao1, Xuejiao Song1, Dongliang Yang1、*, Wenjun Wang2, Buhong Li3, and Xiaochen Dong1、4、**
Author Affiliations
  • 1Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, Jiangsu 211816, P. R. China
  • 2School of Physical Science and Information Technology, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
  • 3MOE Key Laboratory of OptoElectronic Science and Technology for Medicine Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, P. R. China
  • 4School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
  • show less
    DOI: 10.1142/S1793545822300099 Cite this Article
    Hui Li, Min Wei, Xinyi Lv, Yanling Hu, Jinjun Shao, Xuejiao Song, Dongliang Yang, Wenjun Wang, Buhong Li, Xiaochen Dong. Cerium-based nanoparticles for cancer photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2230009 Copy Citation Text show less
    References

    [1] G. Lan, K. Ni, W. Lin. Nanoscale metal–organic frameworks for phototherapy of cancer. Coord. Chem. Rev., 379, 65-81(2017).

    [2] P. Cai, W. Yang, Z. He, H. Jia, H. Wang, W. Zhao. A chlorin-lipid nanovesicle nucleus drug for amplified therapeutic effects of lung cancer by internal radiotherapy combined with the Cerenkov radiation-induced photodynamic therapy. Biomater. Sci., 8, 4841-4851(2020).

    [3] H. S. Walter, S. I. Ahmed. Targeted therapies in cancer. Surgery (Oxford), 39, 202-207(2021).

    [4] D. Yang, X. Lv, L. Xue, N. Yang. A lipase-responsive antifungal nanoplatform for synergistic photodynamic/photothermal/pharmaco-therapy of azole-resistant Candida albicans infections. Chem. Commun., 55, 15145-15148(2019).

    [5] D. Yang, L. Sun, L. Xue, X. Wang, Y. Hu, J. Shao, L. Fu, X. Dong. Orthogonal Aza-BODIPY–BODIPY dyad as heavy-atom free photosensitizer for photo-initiated antibacterial therapy. J. Innov. Opt. Health Sci., 15, 2250004(2022).

    [6] C. Cao, T. Zhang, N. Yang, X. Niu, Z. Zhou, J. Wang, D. Yang, P. Chen, L. Zhong, X. Dong. POD Nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy. Signal Transduct. Target. Ther., 7, 86(2022).

    [7] D. Chen, Z. Zhong, Q. Ma, J. Shao, W. Huang, X. Dong. Aza-BODIPY-based nanomedicines in cancer phototheranostics. ACS Appl. Mater., 12, 26914-26925(2020).

    [8] X. Dai, T. Du, K. Han. Engineering nanoparticles for optimized photodynamic therapy. ACS Biomater. Sci. Eng., 5, 6342-6354(2019).

    [9] H. Dai, Z. Cheng, T. Zhang, W. Wang, J. Shao, W. Wang, Y. Zhao, X. Dong, L. Zhong. Boron difluoride formazanate dye for high-efficiency NIR-II fluorescence imaging-guided cancer photothermal therapy. Chin. Chem. Lett., 33, 2501-2506(2021).

    [10] W. K. Ong, X. Yao, D. Jana, M. Li, Y. Zhao, Z. Luo. Efficient production of reactive oxygen species from Fe3O4/ZnPC coloaded nanoreactor for cancer therapeutics in vivo. Small Struct., 1, 2000065(2020).

    [11] J. Yan, X. Zhan, Z. Zhang, K. Chen, M. Wang, Y. Sun, B. He, Y. Liang. Tetrahedral DNA nanostructures for effective treatment of cancer: Advances and prospects. J. Nanobiotechnol., 19, 412(2021).

    [12] B. Joseph, V. Sagarika, C. Sabu, N. Kalarikkal, S. Thomas. Cellulose nanocomposites: Fabrication and biomedical applications. J. Bioresour. Bioprod., 5, 223-237(2020).

    [13] M. R. Saeb, N. Rabiee, F. Seidi, B. F. Far, M. Bagherzadeh, E. C. Lima, M. Rabiee. Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. J. Bioresour. Bioprod., 6, 215-222(2021).

    [14] D. Yang, F. Chen, S. He, H. Shen, Y. Hu, N. Feng, S. Wang, L. Weng, Z. Luo, L. Wang. One-pot growth of triangular SnS nanopyramids for photoacoustic imaging and photothermal ablation of tumors. New J. Chem., 43, 13256-13262(2019).

    [15] W. Xiu, S. Gan, Q. Wen. Biofilm microenvironment-responsive nanotheranostics for dual-mode imaging and hypoxia-relief-enhanced photodynamic therapy of bacterial infections. Research, 2020, 9426453(2020).

    [16] W. Xu, X. Qing, S. Liu, D. Yang, X. Dong, Y. Zhang. Hollow mesoporous manganese oxides: Application in cancer diagnosis and therapy. Small, 18, 2106511(2022).

    [17] C. Cao, H. Zou, N. Yang, H. Li, Y. Cai, X. Song, J. Shao, P. Chen, X. Mou, W. Wang. Fe3O4/Ag/Bi2MoO6 photoactivatable nanozyme for self-replenishing and sustainable cascaded nanocatalytic cancer therapy. Adv. Mater., 33, 2106996(2021).

    [18] D. Jampaiah, T. Srinivasa Reddy, A. E. Kandjani, P. R. Selvakannan, Y. M. Sabri, V. E. Coyle, R. Shukla, S. K. Bhargava. Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J. Mater. Chem. B, 4, 3874-3885(2016).

    [19] Y. Duygu, G. Burcu, B. Esra, K. Çiğdem, M. C. Demir, T. Ali. A new nanozyme with peroxidase-like activity for simultaneous phosphoprotein isolation and detection based on metal oxide affinity chromatography: Monodisperse-porous cerium oxide microspheres. Chem. Eng. J., 403, 126357(2020).

    [20] Q. Ma, X. Sun, W. Wang, D. Yang, C. Yang, Q. Shen, J. Shao. Diketopyrrolopyrrole-derived organic small molecular dyes for tumor phototheranostics. Chin. Chem. Lett., 33, 1681-1692(2021).

    [21] H. Dai, X. Wang, J. Shao, W. Wang, X. Mou, X. Dong. NIR-II organic nanotheranostics for precision oncotherapy. Small, 17, 2102646(2021).

    [22] L. Zhang, H. Jiang, M. Selke, X. Wang. Selective cytotoxicity effect of cerium oxide nanoparticles under UV irradiation. J. Biomed. Nanotechnol., 10, 278-286(2014).

    [23] E. Shoko, M. F. Smith, R. H. McKenzie. Charge distribution near bulk oxygen vacancies in cerium oxides. J. Phys., Condens. Matter, 22, 223201(2010).

    [24] Z. Tian, T. Yao, C. Qu, S. Zhang, X. Li, Y. Qu. Photolyase-like catalytic behavior of CeO2. Nano Lett., 19, 8270-8277(2019).

    [25] Z. Wang, L. Fu, Y. Zhu, S. Wang, G. Shen, L. Jin, R. Liang. Chemodynamic/photothermal synergistic therapy based on Ce-doped Cu–Al layered double hydroxides. J. Mater. Chem. B, 9, 710-718(2020).

    [26] Y. Yan, Y. Hou, H. Zhang, W. Gao, R. Han, J. Yu, L. Xu, K. Tang. CeO2 QDs anchored on MnO2 nanoflowers with multiple synergistic effects for amplified tumour therapy. Colloids Surf. B, Biointerfaces, 208, 112103(2021).

    [27] G. Vinothkumar, I. L. Arun, K. S. Babu. Cerium phosphate–cerium oxide heterogeneous composite nanozymes with enhanced peroxidase-like biomimetic activity for glucose and hydrogen peroxide sensing. Inorg. Chem., 58, 349-358(2018).

    [28] Y. Yue, H. Wei, J. Guo, Y. Yang. Ceria-based peroxidase-mimicking nanozyme with enhanced activity: A coordination chemistry strategy. Colloids Surf. A, Physicochem. Eng. Aspects, 610, 125715(2021).

    [29] R. Imran, O. Girgis, B. Shazia, H. Tayyaba, K. David. Photodynamic therapy: Promoting in vitro efficacy of photodynamic therapy by liposomal formulations of a photosensitizing agent. Lasers Surg. Med., 50, 499-505(2018).

    [30] Y. Liang, L. Lu, Y. Chen, Y. Lin. Photodynamic therapy as an antifungal treatment. Exp. Ther. Med., 12, 23-27(2016).

    [31] J. Liu, L. Ye, W. Xiong, T. Liu, H. Yang, J. Lei. A cerium oxide@metal–organic framework nanoenzyme as a tandem catalyst for enhanced photodynamic therapy. Chem. Commun., 57, 2820-2823(2021).

    [32] A. Heidi, R. H. Michael. New photosensitizers for photodynamic therapy. Biochem. J., 473, 347-364(2016).

    [33] L. Lin, X. Song, X. Dong, B. Li. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn. Ther., 31, 102597(2021).

    [34] M. Zhang, C. Zhang, X. Zhai, F. Luo, Y. Du, C. Yan. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater., 62, 1727-1739(2019).

    [35] Y. Chang, Y. Feng, Y. Cheng, R. Zheng, X. Wu, H. Jian. Anisotropic plasmonic metal heterostructures as theranostic nanosystems for near infrared light-activated fluorescence amplification and phototherapy. Adv. Sci., 6, 1900158(2019).

    [36] M. Qi, W. Li, X. Zheng, X. Li, Y. Sun, Y. Wang, C. Li, L. Wang. Cerium and its oxidant-based nanomaterials for antibacterial applications: A state-of-the-art review. Front. Mater., 7, 213(2020).

    [37] Z. Tian, X. Li, Y. Ma, T. Chen, D. Xu. Quantitatively intrinsic biomimetic catalytic activity of nanocerias as radical scavengers and their ability against H2O2 and doxorubicin-induced oxidative stress. ACS Appl. Mater. Interfaces, 9, 23342-23352(2017).

    [38] S. Clement, W. Deng, E. Camilleri, B. C. Wilson, E. M. Goldys. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: Determination of singlet oxygen quantum yield. Sci. Rep., 6, 19954(2016).

    [39] J. Li, H. Peng, C. Wen, P. Xu, X. Shen, C. Gao. NIR-II-responsive CeO2−x@HA nanotheranostics for photoacoustic imaging-guided sonodynamic-enhanced synergistic phototherapy. Langmuir, 38, 5502-5514(2022).

    [40] X. Han, J. Huang, X. Jing, D. Yang, H. Lin, Z. Wang, P. Li, Y. Chen. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. ACS Nano, 12, 4545-4555(2018).

    [41] J. D. Carter, N. N. Cheng, Y. Qu, G. D. Suarez, T. Guo. Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B, 111, 11622-11625(2007).

    [42] C. Yang, Y. Sun, P. Chung, W. Chen. Development of Ce-doped TiO2 activated by X-ray irradiation for alternative cancer treatment. Ceram. Int., 15, 12675-12683(2017).

    [43] R. A. Anderson, B. Albert, R. S. Julio, I. Francesc. Theoretical study of the stoichiometric and reduced Ce-doped TiO2 anatase (001) surfaces. J. Phys. Chem. C, 119, 4805-4816(2015).

    [44] C. Yang, W. Wang, F. Lin, C. Hou. Rare-earth-doped calcium carbonate exposed to X-ray irradiation to induce reactive oxygen species for tumor treatment. Int. J. Mol. Sci., 20, 1148(2019).

    [45] A. Jain, R. Koyani, C. Munoz, P. Sengar, O. E. Contreras, P. Juarez, G. A. Hirata. Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells. J. Colloid Interface Sci., 526, 220-229(2018).

    [46] M. Atif, I. Seemab, M. Fakhar-E-Alam, M. Ismail, M. Qaisar, M. Lubna, A. M. Hammad, H. Atif, W. A. Farooq. Manganese-doped cerium oxide nanocomposite induced photodynamic therapy in MCF-7 cancer cells and antibacterial activity. BioMed Res. Int., 2019, 7156828(2019).

    [47] J. Zhu, A. Jiao, Q. Li, X. Lv, X. Wang, X. Song, B. Li, Y. Zhang, X. Dong. Mitochondrial Ca2+-overloading by oxygen/glutathione depletion-boosted photodynamic therapy based on a CaCO3 nanoplatform for tumor synergistic therapy. Acta Biomater., 137, 252-261(2021).

    [48] L. Huang, W. Zhang, K. Chen, W. Zhu, X. Liu. Facet-selective response of trigger molecule to CeO2{110} for up-regulating oxidase-like activity. Chem. Eng. J., 330, 746-752(2017).

    [49] G. D. Wang, H. T. Nguyen, H. Chen, P. B. Cox, L. Wang, K. Nagata, Z. Hao, A. Wang, Z. Li, J. Xie. X-ray induced photodynamic therapy: A combination of radiotherapy and photodynamic therapy. Theranostics, 6, 2295-2305(2016).

    [50] L. Zhang, H. Zhong, H. Zhang, C. Ding. A multifunctional nano system based on DNA and CeO2 for intracellular imaging of miRNA and enhancing photodynamic therapy. Talanta, 221, 121554(2021).

    [51] Y. Wang, Y. Zhang, M. Jin, Y. Lv, Z. Pei, Y. Pei. A hypericin delivery system based on polydopamine coated cerium oxide nanorods for targeted photodynamic therapy. Polymers (Basel), 11, 1025(2019).

    [52] J. Wen, K. Yang, Y. Xu, H. Li, F. Liu, S. Sun. Construction of a triple-stimuli-responsive system based on cerium oxide coated mesoporous silica nanoparticles. Sci. Rep., 6, 38931(2016).

    [53] Q. Xu, D. Li, H. Zhou, B. Chen, J. Wang, S. Wang, A. Chen, N. Jiang. MnO2-coated porous Pt@CeO2 core–shell nanostructures for photoacoustic imaging-guided tri-modal cancer therapy. Nanoscale, 13, 16499-16508(2021).

    [54] X. Liu, J. Liu, S. Chen, Y. Xie, Q. Fan. Dual-path modulation of hydrogen peroxide to ameliorate hypoxia for enhancing photodynamic/starvation synergistic therapy. J. Mater. Chem. B, 8, 9933-9942(2020).

    [55] N. Li, Z. Duan, L. Wang, C. Guo, H. Zhang, Z. Gu, Q. Gong, K. Luo. An amphiphilic PEGylated peptide dendron-gemcitabine prodrug-based nanoagent for cancer therapy. Macromol. Rapid Commun., 42, 2100111(2021).

    [56] L. Zeng, H. Cheng, Y. Dai, Z. Su, C. Wang. In vivo regenerable cerium oxide nanozyme-loaded pH/H2O2-responsive nanovesicle for tumor-targeted photothermal and photodynamic therapies. ACS Appl. Mater. Interfaces, 13, 233-244(2020).

    [57] X. Gao, J. Feng, S. Song, K. Liu, K. Du, Y. Zhou, K. Lv, H. Zhang. Tumor-targeted biocatalyst with self-accelerated cascade reactions for enhanced synergistic starvation and photodynamic therapy. Nano Today, 43, 101433(2022).

    [58] Z. Hu, Y. Ding. Cerium oxide nanoparticles-mediated cascade catalytic chemo-photo tumor combination therapy. Nano Res., 15, 333-345(2022).

    [59] S. Dong, Y. Dong, T. Jia, S. Liu, J. Liu, D. Yang, F. He, S. Gai, P. Yang, J. Lin. GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv. Mater., 32, 2002439(2020).

    [60] S. Dong, Y. Dong, B. Liu, J. Liu, S. Liu, Z. Zhao, W. Li, B. Tian, R. Zhao, F. He. Guiding transition metal-doped hollow cerium tandem nanozymes with elaborately regulated multi-enzymatic activities for intensive chemodynamic therapy. Adv. Mater., 34, 2107054(2022).

    [61] X. Lin, Y. Hu, C. Zhang, J. Yin, R. Cui, D. Yang, B. Chen. More severe toxicity of gold nanoparticles with rougher surface in mouse hippocampal neurons. J. Central South Univ., 28, 3642-3653(2021).

    [62] H. Zhu, Y. Fang, Q. Miao, X. Qi, D. Ding, P. Chen, K. Pu. Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano, 11, 8998-9009(2017).

    [63] D. D. Nuzzo, A. Aguirre, M. Shahid, V. S. Gevaerts, S. C. Meskers, R. A. Janssen. Improved film morphology reduces charge carrier recombination into the triplet excited state in a small bandgap polymer-fullerene photovoltaic cell. Adv. Mater., 22, 4321-4324(2010).

    [64] C. Winterbourn. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol., 4, 278-286(2008).

    [65] I. Celardo, J. Z. Pedersen, E. Traversa, L. Ghibelli. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 3, 1411-1420(2011).

    [66] B. C. Nelson, M. E. Johnson, M. L. Walker, K. R. Riley, C. M. Sims. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants, 5, 15(2016).

    [67] Z. Zhou, J. Song, L. Nie, X. Chen. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev., 45, 6597-6626(2016).

    [68] Q. Yu, Z. Wei, X. Qin, L. Qin, Y. Li, J. Shi, D. Niu. Reductant-free synthesis of MnO2 nanosheet-decorated hybrid nanoplatform for magnetic resonance imaging-monitored tumor microenvironment-responsive chemodynamic therapy and near-infrared-mediated photodynamic therapy. Small Struct., 2, 2100116(2021).

    [69] Y. Wang, L. Wang, L. Guo, M. Yan. Photo-responsive magnetic mesoporous silica nanocomposites for magnetic targeted cancer therapy. New J. Chem., 43, 4908-4918(2019).

    Hui Li, Min Wei, Xinyi Lv, Yanling Hu, Jinjun Shao, Xuejiao Song, Dongliang Yang, Wenjun Wang, Buhong Li, Xiaochen Dong. Cerium-based nanoparticles for cancer photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2230009
    Download Citation