• Journal of Semiconductors
  • Vol. 41, Issue 9, 091708 (2020)
Weiqin Wei, Shuxin Ouyang, and Tierui Zhang
Author Affiliations
  • College of Chemistry, Central China Normal University, Wuhan 430079, China
  • show less
    DOI: 10.1088/1674-4926/41/9/091708 Cite this Article
    Weiqin Wei, Shuxin Ouyang, Tierui Zhang. Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications[J]. Journal of Semiconductors, 2020, 41(9): 091708 Copy Citation Text show less
    References

    [1] A J Bard. Photoelectrochemistry. Science, 207, 139(1980).

    [2] M R Hoffmann, S T Martin, W Choi et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 95, 69(1995).

    [3] P D Quay, B Tilbrook, C S Wong. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science, 256, 74(1992).

    [4] O Gustafsson, M Krusa, Z Zencak et al. Brown clouds over south asia: biomass or fossil fuel combustion. Science, 323, 495(2009).

    [5] T M L Wigley. Could reducing fossil-fuel emissions cause global warming. Nature, 349, 503(1991).

    [6] H Tong, S Ouyang, Y P Bi et al. Nano-photocatalytic materials: Possibilities and challenges. Adv Mater, 24, 229(2012).

    [7] A Kudo, Y Miseki. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 38, 253(2009).

    [8] W Q Wei, D Liu, Z Wei et al. Short-range π–π stacking assembly on P25 TiO2 nanoparticles for enhanced visible-light photocatalysis. ACS Catal, 7, 652(2017).

    [9] W Q Wei, Z Wei, D Liu et al. Enhanced visible-light photocatalysis via back-electron transfer from palladium quantum dots to perylene diimide. Appl Catal B, 230, 49(2018).

    [10] W Q Wei, Y F Zhu. TiO2@perylene diimide full-spectrum photocatalysts via semi-core–shell structure. Small, 15, 1903933(2019).

    [11] W Hu, L Lin, R Q Zhang et al. Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons. J Am Chem Soc, 139, 15429(2017).

    [12] H Fujito, H Kunioku, D Kato et al. Layered perovskite oxychloride Bi4NbO8Cl: A stable visible light responsive photocatalyst for water splitting. ChemInform, 138, 2082(2016).

    [13] Z Wei, M L Liu, Z J Zhang et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ Sci, 11, 2581(2018).

    [14] G T Zeng, J Qiu, Z Li et al. CO2 reduction to methanol on TiO2-passivated GaP photocatalysts. ACS Catal, 4, 3512(2014).

    [15] X Li, J G Yu, M Jaroniec et al. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev, 119, 3962(2019).

    [16] L Zeng, T Liu, C He et al. Organized aggregation makes insoluble perylene diimide efficient for the reduction of aryl halides via consecutive visible light-induced electron-transfer processes. J Am Chem Soc, 138, 3958(2016).

    [17] I Ghosh, T Ghosh, J I Bardagi et al. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science, 346, 725(2014).

    [18] P K J Robertson, J M C Robertson, D W Bahnemann. Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J Hazard Mater, 211/212, 161(2012).

    [19] J Wang, D Liu, Y F Zhu et al. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Appl Catal B, 231, 251(2018).

    [20] A Fujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37(1972).

    [21] Z G Chai, T T Zeng, Q Li et al. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J Am Chem Soc, 138, 10128(2016).

    [22] J Q Hu, A L Liu, H L Jin et al. A versatile strategy for shish-kebab-like multi-heterostructured chalcogenides and enhanced photocatalytic hydrogen evolution. J Am Chem Soc, 137, 11004(2015).

    [23] H Song, X G Meng, S Y Wang et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J Am Chem Soc, 141, 20507(2019).

    [24] W W He, H K Kim, W G Wamer et al. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc, 136, 750(2014).

    [25] K Zhang, J L Liu, L Y Wang et al. Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis. J Am Chem Soc, 142, 8641(2020).

    [26] Y Y Yu, K Ma, R Zhuang et al. Hydroxyl-mediated formation of highly dispersed SnO2/TiO2 heterojunction via pulsed chemical vapor deposition to enhance photocatalytic activity. Ind Eng Chem Res, 58, 14655(2019).

    [27] Y Y Wang, W J Jiang, W J Luo et al. Ultrathin nanosheets g-C3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity. Appl Catal B, 237, 633(2018).

    [28] J J Yang, D M Chen, Y Zhu et al. 3D–3D porous Bi2WO6/ graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Appl Catal B, 205, 228(2017).

    [29] A Iwase, S Yoshino, T Takayama et al. Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator. J Am Chem Soc, 138, 10260(2016).

    [30] Z G Zou, J H Ye, K Sayama et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414, 625(2001).

    [31] B Weng, M Y Qi, C Han et al. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal, 9, 4642(2019).

    [32] S Ghosh, N A Kouame, L Ramos et al. Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater, 14, 505(2015).

    [33] F X Yang, S S Cheng, X T Zhang et al. 2D organic materials for optoelectronic applications. Adv Mater, 30, 1702415(2018).

    [34] S W Cao, J Low, J G Yu et al. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater, 27, 2150(2015).

    [35] N N Zhao, L M Yan, X Y Zhao et al. Versatile types of organic/inorganic nanohybrids: From strategic design to biomedical applications. Chem Rev, 119, 1666(2019).

    [36] L L Li, Y Chen, J J Zhu. Recent advances in electrochemiluminescence analysis. Anal Chem, 89, 358(2017).

    [37] I Choudhuri, P Bhauriyal, B Pathak. Recent advances in graphene-like 2D materials for spintronics applications. Chem Mater, 31, 8260(2019).

    [38] W H Niu, Y Yang. Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett, 3, 2796(2018).

    [39] Z Meng, R M Stolz, L Mendecki et al. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev, 119, 478(2019).

    [40] W J Ong, L L Tan, Y H Ng et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem Rev, 116, 7159(2016).

    [41] Z H Wang, X Hu, Z Z Liu et al. Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation. ACS Catal, 9, 10260(2019).

    [42] X C Wang, K Maeda, A Thomas et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 8, 76(2009).

    [43] H Takeda, H Kamiyama, K Okamoto et al. Highly efficient and robust photocatalytic systems for CO2 reduction consisting of a Cu(I) photosensitizer and Mn(I) catalysts. J Am Chem Soc, 140, 17241(2018).

    [44] R F Higgins, S M Fatur, S G Shepard et al. Uncovering the roles of oxygen in Cr(III) photoredox catalysis. J Am Chem Soc, 138, 5451(2016).

    [45] D C Hong, T Kawanishi, Y Tsukakoshi et al. Efficient photocatalytic CO2 reduction by a Ni(II) complex having pyridine pendants through capturing a Mg2+ ion as a lewis-acid cocatalyst. J Am Chem Soc, 141, 20309(2019).

    [46] D Zhang, L Z Wu, L Zhou et al. Photocatalytic hydrogen production from hantzsch 1, 4-dihydropyridines by platinum(II) terpyridyl complexes in homogeneous solution. J Am Chem Soc, 126, 3440(2004).

    [47] S Fernández, F Franco, C Casadevall et al. A unified electro- and photocatalytic CO2 to CO reduction mechanism with aminopyridine cobalt complexes. J Am Chem Soc, 142, 120(2020).

    [48] B Xu, L Troian-Gautier, R Dykstra et al. Photocatalyzed diastereoselective isomerization of cinnamyl chlorides to cyclopropanes. J Am Chem Soc, 142, 6206(2020).

    [49] M Elvington, J Brown, S M Arachchige et al. Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J Am Chem Soc, 129, 10644(2007).

    [50] P L Cheung, S C Kapper, T Zeng et al. Improving photocatalysis for the reduction of CO2 through non-covalent supramolecular assembly. J Am Chem Soc, 141, 14961(2019).

    [51] E J Rabe, K L Corp, A L Sobolewski et al. Proton-coupled electron transfer from water to a model heptazine-based molecular photocatalyst. J Phys Chem Lett, 9, 6257(2018).

    [52] C Wang, Z G Xie, K E de Krafft et al. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc, 133, 13445(2011).

    [53] X J Yang, T Liang, J X Sun et al. Template-directed synthesis of photocatalyst-encapsulating metal-organic frameworks with boosted photocatalytic activity. ACS Catal, 9, 7486(2019).

    [54] M B Chambers, X Wang, L Ellezam et al. Maximizing the photocatalytic activity of metal–organic frameworks with aminated-functionalized linkers: Substoichiometric effects in MIL-125-NH2. J Am Chem Soc, 139, 8222(2017).

    [55] P F Wei, M Z Qi, Z P Wang et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J Am Chem Soc, 140, 4623(2018).

    [56] Y Wan, L Wang, H Xu et al. A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting. J Am Chem Soc, 149, 4508(2020).

    [57] Q Z Luo, L L Bao, D S Wang et al. Preparation and strongly enhanced visible light photocatalytic activity of TiO2nanoparticles modified by conjugated derivatives of polyisoprene. J Phys Chem C, 116, 25806(2012).

    [58] D Floresyona, F Goubard, P H Aubert et al. Highly active poly(3-hexylthiophene) nanostructures for photocatalysis under solar light. Appl Catal B, 209, 23(2017).

    [59] M Zhang, W D Rouch, R D McCulla. Conjugated polymers as photoredox catalysts: Visible-light-driven reduction of aryl aldehydes by poly(p-phenylene). Eur J Org Chem, 2012, 6187(2012).

    [60] B Muktha, G Madras, T N Guru Row et al. Conjugated polymers for photocatalysis. J Phys Chem B, 111, 7994(2007).

    [61] S Ghosh, A K Mallik, R N Basu. Enhanced photocatalytic activity and photoresponse of poly(3, 4-ethylenedioxythiophene) nanofibers decorated with gold nanoparticle under visible light. Sol Energy, 159, 548(2018).

    [62] L W Li, Z X Cai, Q H Wu et al. Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J Am Chem Soc, 138, 7681(2016).

    [63] Z J Zhang, Y F Zhu, X J Chen et al. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv Mater, 31, 1806626(2019).

    [64] D Liu, J Wang, X J Bai et al. Self-assembled PDINH supramolecular system for photocatalysis under visible light. Adv Mater, 28, 7284(2016).

    [65] Z Wei, J S Hu, K J Zhu et al. Self-assembled polymer phenylethnylcopper nanowires for photoelectrochemical and photocatalytic performance under visible light. Appl Catal B, 226, 616(2018).

    [66] F Würthner, C R Saha-Möller, B Fimmel et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev, 116, 962(2016).

    [67]

    [68] F Wuerthner. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. ChemInform, 35, 1564(2004).

    [69] G Saito, Y Yoshida. Development of conductive organic molecular assemblies: Organic metals, superconductors, and exotic functional materials. ChemInform, 38, 1(2007).

    [70] A S Weingarten, R V Kazantsev, L C Palmer et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat Chem, 6, 964(2014).

    [71] D M Ke, C L Zhan, S P Xu et al. Self-assembled hollow nanospheres strongly enhance photoluminescence. J Am Chem Soc, 133, 11022(2011).

    [72] K Balakrishnan, A Datar, T Naddo et al. Effect of side-chain substituents on self-assembly of perylene diimide molecules: Morphology control. J Am Chem Soc, 128, 7390(2006).

    [73] S Bai, S Debnath, N Javid et al. Differential self-assembly and tunable emission of aromatic peptide bola-amphiphiles containing perylene bisimide in polar solvents including water. Langmuir, 30, 7576(2014).

    [74] J Wang, W Shi, D Liu et al. Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance. Appl Catal B, 202, 289(2017).

    [75] K Balakrishnan, A Datar, R Oitker et al. Nanobelt self-assembly from an organic n-type semiconductor: Propoxyethyl-PTCDI. J Am Chem Soc, 127, 10496(2005).

    [76] P Jonkheijm, P van der Schoot, A P H J Schenning et al. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science, 313, 80(2006).

    [77] Q Y Gong, J Xing, Y J Huang et al. Perylene diimide oligomer nanoparticles with ultrahigh photothermal conversion efficiency for cancer theranostics. ACS Appl Bio Mater, 3, 1607(2020).

    [78] L Zang. Interfacial donor–acceptor engineering of nanofiber materials to achieve photoconductivity and applications. Acc Chem Res, 48, 2705(2015).

    [79] Y K Che, A Datar, X M Yang et al. Enhancing one-dimensional charge transport through intermolecular π-electron delocalization: Conductivity improvement for organic nanobelts. J Am Chem Soc, 129, 6354(2007).

    [80] L Zang, Y K Che, J S Moore. One-dimensional self-assembly of planar π-conjugated molecules: Adaptable building blocks for organic nanodevices. Acc Chem Res, 41, 1596(2008).

    [81] H Miao, J Yang, G L Peng et al. Enhancement of the degradation ability for organic pollutants via the synergistic effect of photoelectrocatalysis on a self-assembled perylene diimide (SA-PDI) thin film. Sci Bull, 64, 896(2019).

    [82] J Yang, H Miao, Y X Wei et al. Π-Π Interaction between self-assembled perylene diimide and 3D graphene for excellent visible-light photocatalytic activity. Appl Catal B, 240, 225(2019).

    [83] J Yang, H Miao, W L Li et al. Designed synthesis of a p-Ag2S/n-PDI self-assembled supramolecular heterojunction for enhanced full-spectrum photocatalytic activity. J Mater Chem A, 7, 6482(2019).

    [84] H Miao, J Yang, Y X Wei et al. Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Appl Catal B, 239, 61(2018).

    [85] Y X Wei, M G Ma, W L Li et al. Enhanced photocatalytic activity of PTCDI-C60 via π-π interaction. Appl Catal B, 238, 302(2018).

    [86] Z J Zhang, J Wang, D Liu et al. Highly efficient organic photocatalyst with full visible light spectrum through π–π stacking of TCNQ–PTCDI. ACS Appl Mater Interfaces, 8, 30225(2016).

    [87] S Chen, C Wang, B R Bunes et al. Enhancement of visible-light-driven photocatalytic H2 evolution from water over g-C3N4 through combination with perylene diimide aggregates. Appl Catal A, 498, 63(2015).

    [88] S Chen, D L Jacobs, J K Xu et al. 1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water. RSC Adv, 4, 48486(2014).

    [89] Z Yang, W P Fan, J H Zou et al. Precision cancer theranostic platform by in situ polymerization in perylene diimide-hybridized hollow mesoporous organosilica nanoparticles. J Am Chem Soc, 141, 14687(2019).

    [90] A Stergiou, N Tagmatarchis. Fluorene–perylene diimide arrays onto graphene sheets for photocatalysis. ACS Appl Mater Interfaces, 8, 21576(2016).

    [91] S Chen, P Slattum, C Y Wang et al. Self-assembly of perylene imide molecules into 1D nanostructures: Methods, morphologies, and applications. Chem Rev, 115, 11967(2015).

    [92] C Huang, S Barlow, S R Marder. Perylene-3, 4, 9, 10-tetracarboxylic acid diimides: Synthesis, physical properties, and use in organic electronics. J Org Chem, 76, 2386(2011).

    [93] H Q Peng, L Y Niu, Y Z Chen et al. Biological applications of supramolecular assemblies designed for excitation energy transfer. Chem Rev, 115, 7502(2015).

    [94] Y N Teo, E T Kool. DNA-multichromophore systems. Chem Rev, 112, 4221(2012).

    [95] Z J Chen, M G Debije, T Debaerdemaeker et al. Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: Studies on structural, electrochemical and charge transport properties. ChemPhysChem, 5, 137(2004).

    [96] F Würthner, A Sautter, J Schilling. Synthesis of diazadibenzoperylenes and characterization of their structural, optical, redox, and coordination properties. J Org Chem, 67, 3037(2002).

    [97] P Yan, A Chowdhury, M W Holman et al. Self-organized perylene diimide nanofibers. J Phys Chem B, 109, 724(2005).

    [98] Y K Che, A Datar, K Balakrishnan et al. Ultralong nanobelts self-assembled from an asymmetric perylene tetracarboxylic diimide. J Am Chem Soc, 129, 7234(2007).

    [99] Y K Che, H L Huang, M Xu et al. Interfacial engineering of organic nanofibril heterojunctions into highly photoconductive materials. J Am Chem Soc, 133, 1087(2011).

    [100] F Graser, E Hädicke. Kristallstruktur und Farbe Bei Perylen-3, 4: 9, 10-bis(dicarboximid)-Pigmenten. Liebigs Ann Chem, 1980, 1994(1980).

    [101] F Graser, E Hädike. Kristallstruktur und Farbe Bei Perylen-3, 4: 9, 10-bis(dicarboximid)-Pigmenten, 2. Liebigs Ann Chem, 1984, 483(1984).

    [102] C W Struijk, A B Sieval, J E J Dakhorst et al. Liquid crystalline perylene diimides: architecture and charge carrier mobilities. J Am Chem Soc, 122, 11057(2000).

    [103] A Datar, K Balakrishnan, X M Yang et al. Linearly polarized emission of an organic semiconductor nanobelt. J Phys Chem B, 110, 12327(2006).

    [104] H Yamagata, D S Maxwell, J Fan et al. HJ-aggregate behavior of crystalline 7, 8, 15, 16-tetraazaterrylene: Introducing a new design paradigm for organic materials. J Phys Chem C, 118, 28842(2014).

    [105] Y C Chen, J W Y Lam, R T K Kwok et al. Aggregation-induced emission: Fundamental understanding and future developments. Mater Horiz, 6, 428(2019).

    [106] Y K Che, X M Yang, G L Liu et al. Ultrathin n-type organic nanoribbons with high photoconductivity and application in optoelectronic vapor sensing of explosives. J Am Chem Soc, 132, 5743(2010).

    [107] F Rodler, B Schade, C M Jäger et al. Amphiphilic perylene–calix. J Am Chem Soc, 137, 3308(2015).

    [108] J L Wang, Y Yu, L Z Zhang. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl Catal B, 136/137, 112(2013).

    [109] Y M Liang, S Q Lan, P Deng et al. Regioregular and regioirregular poly(selenophene-perylene diimide) acceptors for polymer–polymer solar cells. ACS Appl Mater Interfaces, 10, 32397(2018).

    [110] X Li, H Wang, H Nakayama et al. Multi-sulfur-annulated fused perylene diimides for organic solar cells with low open-circuit voltage loss. ACS Appl Energy Mater, 2, 3805(2019).

    [111] S K Samanta, I Song, J H Yoo et al. Organic n-channel transistors based on. ACS Appl Mater Interfaces, 10, 32444(2018).

    [112] J Yang, Y Yin, F Chen et al. Comparison of three n-type copolymers based on benzodithiophene and naphthalene diimide/perylene diimide/fused perylene diimides for all-polymer solar cells application. ACS Appl Mater Interfaces, 10, 23263(2018).

    [113] M Woodhouse, C L Perkins, M T Rawls et al. Non-conjugated polymers for organic photovoltaics: Physical and optoelectronic properties of poly(perylene diimides). J Phys Chem C, 114, 6784(2010).

    [114] J Zhang, Y Li, J Huang et al. Ring-fusion of perylene diimide acceptor enabling efficient nonfullerene organic solar cells with a small voltage loss. J Am Chem Soc, 139, 16092(2017).

    [115] T C An, J B An, Y P Gao et al. Photocatalytic degradation and mineralization mechanism and toxicity assessment of antivirus drug acyclovir: Experimental and theoretical studies. Appl Catal B, 164, 279(2015).

    [116] M Iwase, K Yamada, T Kurisaki et al. Visible-light photocatalysis with phosphorus-doped titanium(IV) oxide particles prepared using a phosphide compound. Appl Catal B, 132/133, 39(2013).

    [117] S Kitano, K Hashimoto, H Kominami. Photocatalytic degradation of 2-propanol over metal-ion-loaded titanium(IV) oxide under visible light irradiation: Effect of physical properties of nano-crystalline titanium(IV) oxide. Appl Catal B, 101, 206(2011).

    [118] Q Li, J K Shang. Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance. Environ Sci Technol, 44, 3493(2010).

    [119] Q Shi, S Murcia-López, P Y Tang et al. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process. ACS Catal, 8, 3331(2018).

    [120] L J An, H Onishi. Electron–hole recombination controlled by metal doping sites in NaTaO3 photocatalysts. ACS Catal, 5, 3196(2015).

    [121] X Liu, S Gao, H Xu et al. Stable blue TiO2–x nanoparticles for efficient visible light photocatalysts. Nanoscale, 5, 1870(2013).

    [122] Q Zhu, Y Peng, L Lin et al. Green synthetic approach for Ti3+ self-doped TiO2–x nanoparticles with efficient visible light photocatalytic activity. J Mater Chem A, 2, 4429(2014).

    [123] H W Huang, C Zhou, X C Jiao et al. Subsurface defect engineering in single-unit-cell Bi2WO6 monolayers boosts solar-driven photocatalytic performance. ACS Catal, 10, 1439(2020).

    [124] D Jiang, W Z Wang, L Zhang et al. Insights into the surface-defect dependence of photoreactivity over CeO2 nanocrystals with well-defined crystal facets. ACS Catal, 5, 4851(2015).

    [125] S K Cushing, F K Meng, J Y Zhang et al. Effects of defects on photocatalytic activity of hydrogen-treated titanium oxide nanobelts. ACS Catal, 7, 1742(2017).

    [126] G Seybold, G Wagenblast. New perylene and violanthrone dyestuffs for fluorescent collectors. Dye Pigment, 11, 303(1989).

    [127] M Sadrai, L Hadel, R R Sauers et al. Lasing action in a family of perylene derivatives: Singlet absorption and emission spectra, triplet absorption and oxygen quenching constants, and molecular mechanics and semiempirical molecular orbital calculations. J Phys Chem, 96, 7988(1992).

    [128] M J Ahrens, M J Fuller, M R Wasielewski. Cyanated perylene-3, 4-dicarboximides and perylene-3, 4: 9, 10-bis(dicarboximide): Facile chromophoric oxidants for organic photonics and electronics. Chem Mater, 15, 2684(2003).

    [129] Y Y Zhao, M R Wasielewski. 3, 4: 9, 10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors. Tetrahedron Lett, 40, 7047(1999).

    [130] A S Lukas, Y Y Zhao, S E Miller et al. Biomimetic electron transfer using low energy excited states: A green perylene-based analogue of chlorophylla. J Phys Chem B, 106, 1299(2002).

    [131] J I Yoshida, K Kataoka, R Horcajada et al. Modern strategies in electroorganic synthesis. Chem Rev, 108, 2265(2008).

    [132] C Kingston, M D Palkowitz, Y Takahira et al. A survival guide for the "electro-curious". Acc Chem Res, 53, 72(2020).

    [133] A Ruffoni, F Juliá, T D Svejstrup et al. Practical and regioselective amination of arenes using alkyl amines. Nat Chem, 11, 426(2019).

    [134] J Bariwal, E van der Eycken. C–N bond forming cross-coupling reactions: An overview. Chem Soc Rev, 42, 9283(2013).

    [135] K D Moeller. Synthetic applications of anodic electrochemistry. Tetrahedron, 56, 9527(2000).

    [136] Q L Yang, X Y Wang, J Y Lu et al. Copper-catalyzed electrochemical C–H amination of arenes with secondary amines. J Am Chem Soc, 140, 11487(2018).

    [137] T Morofuji, A Shimizu, J I Yoshida. Electrochemical C–H amination: Synthesis of aromatic primary amines viaN-arylpyridinium ions. J Am Chem Soc, 135, 5000(2013).

    [138] W S Ham, J Hillenbrand, J Jacq et al. Divergent late-stage (hetero)aryl C–H amination by the pyridinium radical cation. Angew Chem Int Ed, 58, 532(2019).

    [139] R Hayashi, A Shimizu, J I Yoshida. The stabilized cation pool method: Metal- and oxidant-free benzylic C–H/aromatic C–H cross-coupling. J Am Chem Soc, 138, 8400(2016).

    [140] Z W Hou, Z Y Mao, Y Y Melcamu et al. Back cover: Electrochemical synthesis of imidazo-fused N-heteroaromatic compounds through a C–N bond-forming radical. Angew Chem Int Ed, 57, 1722(2018).

    [141] Z W Hou, Z Y Mao, H B Zhao et al. Frontispiece: electrochemical C–H/N–H functionalization for the synthesis of highly functionalized (aza)indoles. Angew Chem Int Ed, 55, 9168(2016).

    [142] S R Waldvogel, M Selt. Electrochemical allylic oxidation of olefins: Sustainable and safe. Angew Chem Int Ed, 55, 12578(2016).

    [143] Y Y Jiang, K Xu, C C Zeng. Use of electrochemistry in the synthesis of heterocyclic structures. Chem Rev, 118, 4485(2018).

    [144] M Yan, Y Kawamata, P S Baran. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem Rev, 117, 13230(2017).

    [145] A Jutand. Contribution of electrochemistry to organometallic catalysis. Chem Rev, 108, 2300(2008).

    [146] R Z Feng, J A Smith, K D Moeller. Anodic cyclization reactions and the mechanistic strategies that enable optimization. Acc Chem Res, 50, 2346(2017).

    [147] E Krieg, H Weissman, E Shimoni et al. Understanding the effect of fluorocarbons in aqueous supramolecular polymerization: Ultrastrong noncovalent binding and cooperativity. J Am Chem Soc, 136, 9443(2014).

    [148] Q L Zhao, S Zhang, Y Liu et al. Tetraphenylethenyl-modified perylene bisimide: Aggregation-induced red emission, electrochemical properties and ordered microstructures. J Mater Chem, 22, 7387(2012).

    [149] A D Hendsbee, J P Sun, W K Law et al. Synthesis, self-assembly, and solar cell performance of N-annulated perylene diimide non-fullerene acceptors. Chem Mater, 28, 7098(2016).

    [150] G Li, Y B Zhao, J B Li et al. Synthesis, characterization, physical properties, and OLED application of single BN-fused perylene diimide. J Org Chem, 80, 196(2015).

    [151] S Seifert, D Schmidt, F Würthner. An ambient stable core-substituted perylene bisimide dianion: Isolation and single crystal structure analysis. Chem Sci, 6, 1663(2015).

    [152] N J Schuster, L A Joyce, D W Paley et al. The structural origins of intense circular dichroism in a waggling helicene nanoribbon. J Am Chem Soc, 142, 7066(2020).

    [153] S K Lee, Y B Zu, A Herrmann et al. Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution. J Am Chem Soc, 121, 3513(1999).

    [154] A D Zhang, W Jiang, Z H Wang. Fulvalene-embedded perylene diimide and its stable radical anion. Angew Chem, 132, 762(2020).

    [155] B A Jones, A Facchetti, M R Wasielewski et al. Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport. J Am Chem Soc, 129, 15259(2007).

    [156] S R Peurifoy, E Castro, F Liu et al. Three-dimensional graphene nanostructures. J Am Chem Soc, 140, 9341(2018).

    [157] G P Gao, N N Liang, H Geng et al. Spiro-fused perylene diimide arrays. J Am Chem Soc, 139, 15914(2017).

    [158] B Liu, M Böckmann, W Jiang et al. Perylene diimide-embedded double. J Am Chem Soc, 142, 7092(2020).

    [159] H Langhals. Cyclic carboxylic imide structures as structure elements of high stability. Novel developments in perylene dye chemistry. Heterocycles, 1, 477(1995).

    [160] W Wang, L Q Wang, B J Palmer et al. Cyclization and catenation directed by molecular self-assembly. J Am Chem Soc, 128, 11150(2006).

    [161] T A Barendt, L Ferreira, I Marques et al. Anion- and solvent-induced rotary dynamics and sensing in a perylene diimide. J Am Chem Soc, 139, 9026(2017).

    [162] C M Pochas, K A Kistler, H Yamagata et al. Contrasting photophysical properties of star-shaped vs linear perylene diimide complexes. J Am Chem Soc, 135, 3056(2013).

    [163] J Wang, Z Yang, X X Gao et al. Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl Catal B, 217, 169(2017).

    [164] C C You, F Würthner. Self-assembly of ferrocene-functionalized perylene bisimide bridging ligands with Pt(II) corner to electrochemically active molecular squares. J Am Chem Soc, 125, 9716(2003).

    [165] M C R Delgado, E G Kim, D A D S Filho et al. Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: A density functional theory investigation. J Am Chem Soc, 132, 3375(2010).

    [166] Y J Kim, Y Lee, K Park et al. Hierarchical self-assembly of perylene diimide (PDI) crystals. J Phys Chem Lett, 11, 3934(2020).

    [167] E J Zhou, J Z Cong, Q S Wei et al. Berichtigung: all-polymer solar cells from perylene diimide based copolymers: Material design and phase separation control. Angew Chem, 123, 8120(2011).

    [168] Z H Luo, F Wu, T Zhang et al. Designing a perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability. Angew Chem Int Ed, 58, 8520(2019).

    [169] L F Dössel, V Kamm, I A Howard et al. Synthesis and controlled self-assembly of covalently linked hexa-peri-hexabenzocoronene/perylene diimide dyads as models to study fundamental energy and electron transfer processes. J Am Chem Soc, 134, 5876(2012).

    [170] S B Jin, M Supur, M Addicoat et al. Creation of superheterojunction polymers via direct polycondensation: Segregated and bicontinuous donor–acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation. J Am Chem Soc, 137, 7817(2015).

    [171] S Prathapan, S I Yang, J Seth et al. Synthesis and excited-state photodynamics of perylene–porphyrin dyads. 1. parallel energy and charge transfer via a diphenylethyne linker. J Phys Chem B, 105, 8237(2001).

    [172] M P O'Neil, M P Niemczyk, W A Svec et al. Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule. Science, 257, 63(1992).

    [173] T van der Boom, R T Hayes, Y Y Zhao et al. Charge transport in photofunctional nanoparticles self-assembled from zinc 5, 10, 15, 20-tetrakis(perylenediimide)porphyrin building blocks. J Am Chem Soc, 124, 9582(2002).

    [174] J Baram, E Shirman, N Ben-Shitrit et al. Control over self-assembly through reversible charging of the aromatic building blocks in photofunctional supramolecular fibers. J Am Chem Soc, 130, 14966(2008).

    [175] C Jung, B K Müller, D C Lamb et al. A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling. J Am Chem Soc, 128, 5283(2006).

    [176] V Marcon, D W Breiby, W Pisula et al. Understanding structure–mobility relations for perylene tetracarboxydiimide derivatives. J Am Chem Soc, 131, 11426(2009).

    [177] R N Dsouza, U Pischel, W M Nau. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev, 111, 7941(2011).

    [178] X M Yin, Q X Wang, Y J Zheng et al. Molecular alignment and electronic structure of N, N'-dibutyl-3, 4, 9, 10-perylene-tetracarboxylic-diimide molecules on MoS2 surfaces. ACS Appl Mater Interfaces, 9, 5566(2017).

    [179] L Gigli, R Arletti, G Tabacchi et al. Structure and host-guest interactions of perylene-diimide dyes in zeolite L nanochannels. J Phys Chem C, 122, 3401(2018).

    [180] N Liu, M M Shi, X W Pan et al. Photoinduced electron transfer and enhancement of photoconductivity in silicon nanoparticles/perylene diimide composites in a polymer matrix. J Phys Chem C, 112, 15865(2008).

    [181] A F Xie, B Liu, J E Hall et al. Self-assembled photoactive polyelectrolyte/perylene-diimide composites. Langmuir, 21, 4149(2005).

    [182] D Gosztola, M P Niemczyk, W Svec et al. Excited doublet states of electrochemically generated aromatic imide and diimide radical anions. J Phys Chem A, 104, 6545(2000).

    [183] O O Adegoke, I H Jung, M Orr et al. Effect of acceptor strength on optical and electronic properties in conjugated polymers for solar applications. J Am Chem Soc, 137, 5759(2015).

    [184] S Shoaee, T M Clarke, C Huang et al. Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. J Am Chem Soc, 132, 12919(2010).

    [185] R K Dubey, M Niemi, K Kaunisto et al. Direct evidence of significantly different chemical behavior and excited-state dynamics of 1, 7- and 1, 6-regioisomers of pyrrolidinyl-substituted perylene diimide. Chem Eur J, 19, 6791(2013).

    [186] S T Ryan, R M Young, s J J Henkelis et al. Energy and electron transfer dynamics within a series of perylene diimide/cyclophane systems. J Am Chem Soc, 137, 15299(2015).

    [187] A M Ramos, E H A Beckers, T Offermans et al. Photoinduced multistep electron transfer in an oligoaniline–oligo(p-phenylene vinylene)–perylene diimide molecular array. J Phys Chem A, 108, 8201(2004).

    [188] S T J Ryan, J del Barrio, I Ghosh et al. Efficient host–guest energy transfer in polycationic cyclophane–perylene diimide complexes in water. J Am Chem Soc, 136, 9053(2014).

    [189] E R D Santos, J Pina, T Venâncio et al. Photoinduced energy and electron-transfer reactions by polypyridine ruthenium(II) complexes containing a derivatized perylene diimide. J Phys Chem C, 120, 22831(2016).

    [190] Y Song, W Zhang, S J He et al. Perylene diimide and luminol as potential-resolved electrochemiluminescence nanoprobes for dual targets immunoassay at low potential. ACS Appl Mater Interfaces, 11, 33676(2019).

    [191] Y W Huang, L N Fu, W J Zou et al. Ammonia sensory properties based on single-crystalline micro/nanostructures of perylenediimide derivatives: Core-substituted effect. J Phys Chem C, 115, 10399(2011).

    [192] Y K Che, X M Yang, S Loser et al. Expedient vapor probing of organic amines using fluorescent nanofibers fabricated from an n-type organic semiconductor. Nano Lett, 8, 2219(2008).

    [193] N J Schuster, D W Paley, S Jockusch et al. Electron delocalization in perylene diimide helicenes. Angew Chem Int Ed, 55, 13519(2016).

    [194] M L Ball, B Y Zhang, Q Z Xu et al. Influence of molecular conformation on electron transport in giant, conjugated macrocycles. J Am Chem Soc, 140, 10135(2018).

    [195] P R L Malenfant, C D Dimitrakopoulos, J D Gelorme et al. N-type organic thin-film transistor with high field-effect mobility based on a N, N'-dialkyl-3, 4, 9, 10-perylene tetracarboxylic diimide derivative. Appl Phys Lett, 80, 2517(2002).

    [196] X Y Wang, J Q Meng, X Yang et al. Fabrication of a perylene tetracarboxylic diimide–graphitic carbon nitride heterojunction photocatalyst for efficient degradation of aqueous organic pollutants. ACS Appl Mater Interfaces, 11, 588(2019).

    [197] W Q Liu, S Bobbala, C L Stern et al. XCage: A tricyclic octacationic receptor for perylene diimide with picomolar affinity in water. J Am Chem Soc, 142, 3165(2020).

    [198] Q C Zhang, L Jiang, J Wang et al. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. Appl Catal B, 277, 119122(2020).

    [199] P Chen, L Blaney, G Cagnetta et al. Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis. Environ Sci Technol, 53, 1564(2019).

    [200] D M Guldi. Fullerene–porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev, 31, 22(2002).

    [201] L Liu, M T Yue, J R Lu et al. The enrichment of photo-catalysis via self-assembly perylenetetracarboxylic acid diimide polymer nanostructures incorporating TiO2 nano-particles. Appl Surf Sci, 456, 645(2018).

    [202] R F Araújo, C J R Silva, M C Paiva et al. Efficient dispersion of multi-walled carbon nanotubes in aqueous solution by non-covalent interaction with perylene bisimides. RSC Adv, 3, 24535(2013).

    [203] Y Liu, E W Zhu, L Y Bian et al. Robust graphene dispersion with amphiphlic perylene-polyglycidol. Mater Lett, 118, 188(2014).

    [204] C Oelsner, C Schmidt, F Hauke et al. Interfacing strong electron acceptors with single wall carbon nanotubes. J Am Chem Soc, 133, 4580(2011).

    [205] Y Tsarfati, V Strauss, S Kuhri et al. Dispersing perylene diimide/SWCNT hybrids: Structural insights at the molecular level and fabricating advanced materials. J Am Chem Soc, 137, 7429(2015).

    [206] K Zhang, J Wang, W J Jiang et al. Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis. Appl Catal B, 232, 175(2018).

    [207] Q Y Ji, Z Xu, W M Xiang et al. Enhancing the performance of pollution degradation through secondary self-assembled composite supramolecular heterojunction photocatalyst BiOCl/PDI under visible light irradiation. Chemosphere, 253, 126751(2020).

    [208] Q Z Gao, J Xu, Z P Wang et al. Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n–n heterojunction via π–π interaction and interfacial charge separation. Appl Catal B, 271, 118933(2020).

    [209] H L Wang, L L Zhao, X Q Liu et al. Novel hydrogen bonding composite based on copper phthalocyanine/perylene diimide derivatives p–n heterojunction with improved photocatalytic activity. Dye Pigment, 137, 322(2017).

    [210] W G Zeng, T Cai, Y T Liu et al. An artificial organic-inorganic Z-scheme photocatalyst WO3@Cu@PDI supramolecular with excellent visible light absorption and photocatalytic activity. Chem Eng J, 381, 122691(2020).

    [211] Y Cheng, R Q Song, K Wu et al. The enhanced visible-light-driven antibacterial performances of PTCDI-PANI(Fe(III)-doped) heterostructure. J Hazard Mater, 383, 121166(2020).

    [212] X M Gao, K L Gao, X B Li et al. Hybrid PDI/BiOCl heterojunction with enhanced interfacial charge transfer for a full-spectrum photocatalytic degradation of pollutants. Catal Sci Technol, 10, 372(2020).

    [213] T H Jeon, M S Koo, H Kim et al. Dual-functional photocatalytic and photoelectrocatalytic systems for energy- and resource-recovering water treatment. ACS Catal, 8, 11542(2018).

    [214] C M Ding, J Y Shi, Z L Wang et al. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal, 7, 675(2017).

    [215] K R Brereton, A G Bonn, A J M Miller. Molecular photoelectrocatalysts for light-driven hydrogen production. ACS Energy Lett, 3, 1128(2018).

    [216] Y Q Sheng, H Miao, J F Jing et al. Perylene diimide anchored graphene 3D structure via π–π interaction for enhanced photoelectrochemical degradation performances. Appl Catal B, 272, 118897(2020).

    [217] J T Kirner, J J Stracke, B A Gregg et al. Visible-light-assisted photoelectrochemical water oxidation by thin films of a phosphonate-functionalized perylene diimide plus CoOx cocatalyst. ACS Appl Mater Interfaces, 6, 13367(2014).

    [218] J T Kirner, R G Finke. Sensitization of nanocrystalline metal oxides with a phosphonate-functionalized perylene diimide for photoelectrochemical water oxidation with a CoOx catalyst. ACS Appl Mater Interfaces, 9, 27625(2017).

    [219]

    [220] V Kunz, V Stepanenko, F Würthner. Embedding of a ruthenium(ii) water oxidation catalyst into nanofibers via self-assembly. Chem Commun, 51, 290(2015).

    [221] J X Li, Z J Li, C Ye et al. Visible light-induced photochemical oxygen evolution from water by 3, 4, 9, 10-perylenetetracarboxylic dianhydride nanorods as an n-type organic semiconductor. Catal Sci Technol, 6, 672(2016).

    [222] Z Zhong, R F Li, W L Lin et al. One-dimensional nanocrystals of cobalt perylene diimide polymer with in situ generated FeOOH for efficient photocatalytic water oxidation. Appl Catal B, 260, 118135(2020).

    [223] R J Zheng, M Zhang, X Sun et al. Perylene-3, 4, 9, 10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets. Appl Catal B, 254, 667(2019).

    [224] M T Vagnini, A L Smeigh, J D Blakemore et al. Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives. PNAS, 109, 15651(2012).

    [225] S Chen, Y X Li, C Y Wang. Visible-light-driven photocatalytic H2 evolution from aqueous suspensions of perylene diimide dye-sensitized Pt/TiO2 catalysts. RSC Adv, 5, 15880(2015).

    [226] T Sun, J G Song, J Jia et al. Real roles of perylenetetracarboxylic diimide for enhancing photocatalytic H2-production. Nano Energy, 26, 83(2016).

    [227] Y Z Chen, A X Li, X Q Yue et al. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Nanoscale, 8, 13228(2016).

    [228] L W Li, Z X Cai. Structure control and photocatalytic performance of porous conjugated polymers based on perylene diimide. Polym Chem, 7, 4937(2016).

    [229] M C Nolan, J J Walsh, L L E Mears et al. pH dependent photocatalytic hydrogen evolution by self-assembled perylene bisimides. J Mater Chem A, 5, 7555(2017).

    [230] R Wang, G Li, A D Zhang et al. Efficient energy-level modification of novel pyran-annulated perylene diimides for photocatalytic water splitting. Chem Commun, 53, 6918(2017).

    [231] K Y Kong, S C Zhang, Y M Chu et al. A self-assembled perylene diimide nanobelt for efficient visible-light-driven photocatalytic H2 evolution. Chem Commun, 55, 8090(2019).

    [232] J J Concepcion, R L House, J M Papanikolas et al. Chemical approaches to artificial photosynthesis. PANS, 109, 15560(2012).

    [233] Y C Xu, J X Zheng, J O Lindner et al. Consecutive charging of a perylene bisimide dye by multistep low-energy solar-light-induced electron transfer towards H2 evolution. Angew Chem Int Ed, 59, 10363(2020).

    [234] X Li, X Lv, Q Q Zhang et al. Self-assembled supramolecular system PDINH on TiO2 surface enhances hydrogen production. J Colloid Interface Sci, 525, 136(2018).

    [235] L Yao, N Guijarro, F Boudoire et al. Establishing stability in organic semiconductor photocathodes for solar hydrogen production. J Am Chem Soc, 142, 7795(2020).

    [236] A S Weingarten, R V Kazantsev, L C Palmer et al. Supramolecular packing controls H2photocatalysis in chromophore amphiphile hydrogels. J Am Chem Soc, 137, 15241(2015).

    [237] R V Kazantsev, A J Dannenhoffer, A S Weingarten et al. Crystal-phase transitions and photocatalysis in supramolecular scaffolds. J Am Chem Soc, 139, 6120(2017).

    [238] R V Kazantsev, A J Dannenhoffer, T Aytun et al. Molecular control of internal crystallization and photocatalytic function in supramolecular nanostructures. Chem, 4, 1596(2018).

    [239] A S Weingarten, A J Dannenhoffer, R V Kazantsev et al. Chromophore dipole directs morphology and photocatalytic hydrogen generation. J Am Chem Soc, 140, 4965(2018).

    [240] H Sai, A Erbas, A Dannenhoffer et al. Chromophore amphiphile-polyelectrolyte hybrid hydrogels for photocatalytic hydrogen production. J Mater Chem A, 8, 158(2020).

    [241] O Dumele, J H Chen, J V Passarelli et al. Supramolecular energy materials. Adv Mater, 32, 1907247(2020).

    [242] C K Prier, D A Rankic, D W C MacMillan. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem Rev, 113, 5322(2013).

    [243]

    [244] C J IV Zeman, S Kim, F Zhang et al. Direct observation of the reduction of aryl halides by a photoexcited perylene diimide radical anion. J Am Chem Soc, 142, 2204(2020).

    [245] I Ghosh. Excited radical anions and excited anions in visible light photoredox catalysis. Phys Sci Rev, 4, 20170185(2019).

    [246] J T Shang, H Y Tang, H W Ji et al. Synthesis, characterization, and activity of a covalently anchored heterogeneous perylene diimide photocatalyst. Chin J Catal, 38, 2094(2017).

    [247] L W Wang, X Zhang, X Yu et al. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Adv Mater, 31, 1901965(2019).

    [248] Z Yang, X Y Chen. Semiconducting perylene diimide nanostructure: Multifunctional phototheranostic nanoplatform. Acc Chem Res, 52, 1245(2019).

    [249] X M Hu, F Lu, L Chen et al. Perylene diimide-grafted polymeric nanoparticles chelated with Gd3+ for photoacoustic/T1-weighted magnetic resonance imaging-guided photothermal therapy. ACS Appl Mater Interfaces, 9, 30458(2017).

    [250] W Tang, Z Yang, S Wang et al. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano, 12, 2610(2018).

    [251] Z Yang, R Tian, J J Wu et al. Impact of semiconducting perylene diimide nanoparticle size on lymph node mapping and cancer imaging. ACS Nano, 11, 4247(2017).

    [252] Q L Fan, K Cheng, Z Yang et al. Photoacoustic imaging: Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv Mater, 27, 774(2015).

    [253] B Lü, Y F Chen, P Y Li et al. Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nat Commun, 10, 767(2019).

    [254] R Englman, J Jortner. The energy gap law for radiationless transitions in large molecules. Mol Phys, 18, 145(1970).

    Weiqin Wei, Shuxin Ouyang, Tierui Zhang. Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications[J]. Journal of Semiconductors, 2020, 41(9): 091708
    Download Citation