• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516010 (2021)
Zhiyu Liu, Xusheng Qiao*, and Xianping Fan
Author Affiliations
  • School of Materials Science and Engineering, Zhejiang University, Hangzhou , Zhejiang 310058, China
  • show less
    DOI: 10.3788/LOP202158.1516010 Cite this Article Set citation alerts
    Zhiyu Liu, Xusheng Qiao, Xianping Fan. Research Progress on Spectral Conversion Materials for Solar Cells[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516010 Copy Citation Text show less
    References

    [1] Richards B S. Luminescent layers for enhanced silicon solar cell performance: down-conversion[J]. Solar Energy Materials and Solar Cells, 90, 1189-1207(2006).

    [2] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 32, 510-519(1961).

    [3] Klampaftis E, Ross D, McIntosh K R et al. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review[J]. Solar Energy Materials and Solar Cells, 93, 1182-1194(2009).

    [4] McKenna B, Evans R C. Towards efficient spectral converters through materials design for luminescent solar devices[J]. Advanced Materials, 29, 1606491(2017).

    [5] Huang X Y. Down conversion luminescence properties of rare-earth ions doped luminescent materials[D](2011).

    [6] Han G F, Zhang S, Boix P P et al. Towards high efficiency thin film solar cells[J]. Progress in Materials Science, 87, 246-291(2017).

    [7] Yang X L, Deng J X. Organic solar cells[J]. Physics, 41, 669-674(2012).

    [8] Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells[J]. Journal of Applied Physics, 93, 3693-3723(2003).

    [9] Jason S. Solar PV cell constrction[EB/OL]. https://www.cleanenergyreviews.info/blog/solar-pv-cell-construction

    [10] Rühle S. Tabulated values of the Shockley-Queisser limit for single junction solar cells[J]. Solar Energy, 130, 139-147(2016).

    [11] Green M A, Dunlop E D, Hohl-Ebinger J et al. Solar cell efficiency tables (version 56)[J]. Progress in Photovoltaics: Research and Applications, 28, 629-638(2020).

    [12] Yoshikawa K, Kawasaki H, Yoshida W et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2, 17032(2017).

    [13] Matsui T, Bidiville A, Maejima K et al. High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability[J]. Applied Physics Letters, 106, 053901(2015).

    [14] Kayes B M, Nie H, Twist R et al. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination[C], 4-8(2011).

    [15] Nakamura M, Yamaguchi K, Kimoto Y et al. Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 9, 1863-1867(2019).

    [16] Yang W S, Noh J H, Jeon N J et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 348, 1234-1237(2015).

    [17] Cui Y, Yao H, Zhang J et al. Single-junction organic photovoltaic cells with approaching 18% efficiency[J]. Advanced Materials, 32, e1908205(2020).

    [18] Zhang X T, Ren M S. The factors influencing photoelectric conversion efficiency and improving measures for crystalline silicon solar cell[J]. Information Recording Materials, 14, 36-42(2013).

    [19] Rowan B C, Wilson L R, Richards B S. Advanced material concepts for luminescent solar concentrators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 1312-1322(2008).

    [20] Richards B S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers[J]. Solar Energy Materials and Solar Cells, 90, 2329-2337(2006).

    [21] Green M A. Solar cells: operating principles, technology and system applications[J]. Solar Energy, 28, 447-449(1982).

    [22] van der Ende B M, Aarts L, Meijerink A. Lanthanide ions as spectral converters for solar cells[J]. Physical Chemistry Chemical Physics, 11, 11081-11095(2009).

    [23] Alam M, Ray B, Khan M et al. The essence and efficiency limits of bulk-heterostructure organic solar cells[J]. MRS Online Proceedings Library, 1390, 136-147(2020).

    [24] Edri E, Kirmayer S, Mukhopadhyay S et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells[J]. Nature Communications, 5, 3461(2014).

    [25] Umari P, Mosconi E, de Angelis F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications[J]. Scientific Reports, 4, 4467(2014).

    [26] Nie W Y, Tsai H, Asadpour R et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 347, 522-525(2015).

    [27] Huang X Y, Han S Y, Huang W et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters[J]. Chemical Society Reviews, 42, 173-201(2013).

    [28] de Wild J, Meijerink A, Rath J K et al. Upconverter solar cells: materials and applications[J]. Energy & Environmental Science, 4, 4835-4848(2011).

    [29] Trupke T, Green M A, Würfel P. Improving solar cell efficiencies by up-conversion of sub-band-gap light[J]. Journal of Applied Physics, 92, 4117-4122(2002).

    [30] Trupke T, Green M A, Würfel P. Improving solar cell efficiencies by down-conversion of high-energy photons[J]. Journal of Applied Physics, 92, 1668-1674(2002).

    [31] Debije M G, Verbunt P P C. Thirty years of luminescent solar concentrator research: solar energy for the built environment[J]. Advanced Energy Materials, 2, 12-35(2012).

    [32] Li L. Infrared quantum-cutting materials for solar cell application[D](2019).

    [33] Green M A, Emery K, Hishikawa Y et al. Solar cell efficiency tables (version 48)[J]. Progress in Photovoltaics: Research and Applications, 24, 905-913(2016).

    [34] Mathew S, Yella A, Gao P et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature Chemistry, 6, 242-247(2014).

    [35] Zhao J B, Li Y K, Yang G F et al. Efficient organic solar cells processed from hydrocarbon solvents[J]. Nature Energy, 1, 15027(2016).

    [36] Uekert T, Solodovnyk A, Ponomarenko S et al. Nanostructured organosilicon luminophores in highly efficient luminescent down-shifting layers for thin film photovoltaics[J]. Solar Energy Materials and Solar Cells, 155, 1-8(2016).

    [37] Brossard M, Hong C Y, Hung M et al. Novel non-radiative exciton harvesting scheme yields a 15% efficiency improvement in high-efficiency III-V solar cells[J]. Advanced Optical Materials, 3, 263-269(2015).

    [38] Xuan T T, Liu J Q, Li H L et al. Microwave synthesis of high luminescent aqueous CdSe/CdS/ZnS quantum dots for crystalline silicon solar cells with enhanced photovoltaic performance[J]. RSC Advances, 5, 7673-7678(2015).

    [39] Chen K, Wang X J, Yang G H et al. Luminescent properties of Ca2GdZr2Al3O12…Mn4+ and Bi3+ codoped phosphors[J]. Acta Optica Sinica, 39, 0216001(2019).

    [40] Wang X J, Liang L F, Chen K et al. Synthesis and luminescence properties of Sr5MgLa2-x-y(BO3)6∶ xBi3+, yM (M=Eu3+, Y3+) phosphors[J]. Acta Optica Sinica, 39, 1116001(2019).

    [41] Goetzberger A, Greube W. Solar energy conversion with fluorescent collectors[J]. Applied Physics, 14, 123-139(1977).

    [42] Hodgson S D, Brooks W S M, Clayton A J et al. The impact of quantum dot concentration on the optical properties of QD/PMMA luminescent down-shifting films applied to CdTe photovoltaic devices[J]. Nano Energy, 4, 1-6(2014).

    [43] Marchionna S, Meinardi F, Acciarri M et al. Photovoltaic quantum efficiency enhancement by light harvesting of organo-lanthanide complexes[J]. Journal of Luminescence, 118, 325-329(2006).

    [44] Machida K, Li H, Ueda D et al. Preparation and application of lanthanide complex incorporated ormosil composite phosphor films[J]. Journal of Luminescence, 87/88/89, 1257-1259(2000).

    [45] Song P, Zhu P F, Zhang C M. Sm3+-Ce3+-doped glass-ceramic waveguide as reduced ultraviolet light induced degradation and improved photon harvesting for perovskite solar cells[J]. Journal of Alloys and Compounds, 731, 1009-1013(2018).

    [46] Lima B C, Gómez-Malagón L A, Gomes A S L et al. Plasmon-assisted efficiency enhancement of Eu3+-doped tellurite glass-covered solar cells[J]. Journal of Electronic Materials, 46, 6750-6755(2017).

    [47] Zhang C M, Wang L J, Ji X et al. Effect of melting times on the down-shifting properties in Ce3+-doped oxyfluoride glass ceramics for a-Si solar cells[J]. Journal of Russian Laser Research, 38, 554-558(2017).

    [48] Garcia J A M, Bontempo L, Gomez-Malagon L A et al. Efficiency boost in Si-based solar cells using tellurite glass cover layer doped with Eu3+ and silver nanoparticles[J]. Optical Materials, 88, 155-160(2019).

    [49] Loos S, Steudel F, Ahrens B et al. Optical properties of down-shifting barium borate glass for CdTe solar cells[J]. Optical Materials, 41, 143-145(2015).

    [50] Steudel F, Loos S, Ahrens B et al. Luminescent borate glass for efficiency enhancement of CdTe solar cells[J]. Journal of Luminescence, 164, 76-80(2015).

    [51] Kawano K, Arai K, Yamada H et al. Application of rare-earth complexes for photovoltaic precursors[J]. Solar Energy Materials and Solar Cells, 48, 35-41(1997).

    [52] Song P, Zhang C M, Zhu P F. Research phosphate glass in combination with Eu/Tb elements on turning sunlight into red/green light as photovoltaic precursors[J]. IEEE Journal of Quantum Electronics, 51, 1-5(2015).

    [53] Mardegan M, Cattaruzza E. Cu-doped photovoltaic glasses by ion exchange for sunlight down-shifting[J]. Optical Materials, 61, 105-110(2016).

    [54] Maalej O, Merigeon J, Boulard B et al. Visible to near-infrared down-shifting in Tm3+ doped fluoride glasses for solar cells efficiency enhancement[J]. Optical Materials, 60, 235-239(2016).

    [55] Cattaruzza E, Caselli V M, Mardegan M et al. Ag+↔Na+ ion exchanged silicate glasses for solar cells covering: down-shifting properties[J]. Ceramics International, 41, 7221-7226(2015).

    [56] Velázquez J J, Rodríguez V D, Yanes A C et al. Down-shifting in Ce3+-Tb3+ co-doped SiO2-LaF3 nano-glass-ceramics for photon conversion in solar cells[J]. Optical Materials, 34, 1994-1997(2012).

    [57] Hou X, Xuan T T, Sun H C et al. High-performance perovskite solar cells by incorporating a ZnGa2O4∶Eu3+ nanophosphor in the mesoporous TiO2 layer[J]. Solar Energy Materials and Solar Cells, 149, 121-127(2016).

    [58] Jia J B, Dong J, Lin J M et al. Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF4∶Eu3+ nanophosphors[J]. Journal of Materials Chemistry C, 7, 937-942(2019).

    [59] Han H V, Lin C C, Tsai Y L et al. A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization[J]. Scientific Reports, 4, 5734(2014).

    [60] Hafez H, Wu J, Lan Z et al. Enhancing the photoelectrical performance of dye-sensitized solar cells using TiO2∶Eu3+nanorods[J]. Nanotechnology, 21, 415201(2010).

    [61] Cardoso M A, Correia S F H, Frias A R et al. Solar spectral conversion based on plastic films of lanthanide-doped ionosilicas for photovoltaics: down-shifting layers and luminescent solar concentrators[J]. Journal of Rare Earths, 38, 531-538(2020).

    [62] Lopez-Delgado R, Higuera-Valenzuela H J, Zazueta-Raynaud A et al. Solar cell efficiency improvement employing down-shifting silicon quantum dots[J]. Microsystem Technologies, 24, 495-502(2018).

    [63] Nakamura Y, Iso Y, Isobe T. Bandgap-tuned CuInS2/ZnS core/shell quantum dots for a luminescent downshifting layer in a crystalline silicon solar module[J]. ACS Applied Nano Materials, 3, 3417-3426(2020).

    [64] Higuera-Valenzuela H J, Ramos-Carrazco A, García-Gutierrez R et al. Efficiency enhancement of silicon solar cells by silicon quantum dots embedded in ZnO films as down-shifting coating[J]. Journal of Materials Science: Materials in Electronics, 31, 20561-20570(2020).

    [65] Xu W, Song H W, Yan D T et al. YVO4∶Eu3+, Bi3+ UV to visible conversion nano-films used for organic photovoltaic solar cells[J]. Journal of Materials Chemistry, 21, 12331-12336(2011).

    [66] Bella F, Griffini G, Gerosa M et al. Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings[J]. Journal of Power Sources, 283, 195-203(2015).

    [67] Griffini G, Bella F, Nisic F et al. Multifunctional luminescent down-shifting fluoropolymer coatings: a straightforward strategy to improve the UV-light harvesting ability and long-term outdoor stability of organic dye-sensitized solar cells[J]. Advanced Energy Materials, 5, 1401312(2015).

    [68] Vossen F M, Aarts M P J, Debije M G. Visual performance of red luminescent solar concentrating windows in an office environment[J]. Energy and Buildings, 113, 123-132(2016).

    [69] Kanellis M, de Jong M M, Slooff L et al. The solar noise barrier project: 1. effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier[J]. Renewable Energy, 103, 647-652(2017).

    [70] Ferreira R A S, Correia S F H, Monguzzi A et al. Spectral converters for photovoltaics: what’s ahead[J]. Materials Today, 33, 105-121(2020).

    [71] Frias A R, Cardoso M A, Bastos A et al. Transparent luminescent solar concentrators using Ln3+-based ionosilicas towards photovoltaic windows[J]. Energies, 12, 451-457(2019).

    [72] Debije M G, Tzikas C, de Jong M M et al. The solar noise barrier project: 3. the effects of seasonal spectral variation, cloud cover and heat distribution on the performance of full-scale luminescent solar concentrator panels[J]. Renewable Energy, 116, 335-343(2018).

    [73] Geisz J F, France R M, Schulte K L et al. Six-junction III-V solar cells with 47.1% conversion efficiency under 143 suns concentration[J]. Nature Energy, 5, 326-335(2020).

    [74] Dexter D L. A theory of sensitized luminescence in solids[J]. The Journal of Chemical Physics, 21, 836-850(1953).

    [75] Wegh R, Donker H, Oskam K et al. Visible quantum cutting in LiGdF4∶Eu3+ through downconversion[J]. Science, 283, 663-666(1999).

    [76] Florêncio L D A, Gómez-Malagón L A, Lima B C et al. Efficiency enhancement in solar cells using photon down-conversion in Tb/Yb-doped tellurite glass[J]. Solar Energy Materials and Solar Cells, 157, 468-475(2016).

    [77] Bouras K, Schmerber G, Ferblantier G et al. Cu(InGa)Se2 solar cell efficiency enhancement using a Yb-doped SnOx photon converting layer[J]. ACS Applied Energy Materials, 2, 5094-5102(2019).

    [78] Fu W B, Zhang C M, Li Z W et al. Luminescence of Cr3+/Yb3+ co-doped oxyfluoride silicate glasses for crystalline silicon solar cell down-conversion devices[J]. Ceramics International, 46, 15054-15060(2020).

    [79] Dumont L, Cardin J, Benzo P et al. SiNx∶Tb3+-Yb3+, an efficient down-conversion layer compatible with a silicon solar cell process[J]. Solar Energy Materials and Solar Cells, 145, 84-92(2016).

    [80] Tai Y P, Li X Z, Du X G et al. Broadband near-infrared quantum cutting by Ce-Yb codoped YAG transparent glass ceramics for silicon solar cells[J]. RSC Advances, 8, 23268-23273(2018).

    [81] Zhou D L, Liu D L, Pan G C et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells[J]. Advanced Materials, 29, 1704149(2017).

    [82] Tai Y P, Li X Z, Pan B L. Efficient near-infrared down conversion in Nd3+-Yb3+ co-doped transparent nanostructured glass ceramics for photovoltaic application[J]. Journal of Luminescence, 195, 102-108(2018).

    [83] Tai Y P, Wang H Y, Wang H et al. Near-infrared down-conversion in Er3+-Yb3+ co-doped transparent nanostructured glass ceramics for crystalline silicon solar cells[J]. RSC Advances, 6, 4085-4089(2016).

    [84] Wang H Y, Ye S, Li S et al. Broadband down-conversion through the co-contribution of simultaneous energy transfer from Eu3+/2+ to Yb3+ and CTS absorption of Yb3+[J]. Journal of Alloys and Compounds, 648, 13-17(2015).

    [85] Bai J Y, Zhao R F, Han G et al. Synthesis of 1D upconversion CeO2∶Er, Yb nanofibers via electrospinning and their performance in dye-sensitized solar cells[J]. RSC Advances, 5, 43328-43333(2015).

    [86] Lia X Y, Li J Y, Li J Q et al. Upconversion 32Nb2O5-10La2O3-16ZrO2 glass activated with Er3+/Yb3+ and dye sensitized solar cell application[J]. Journal of Advanced Ceramics, 6, 312-319(2017).

    [87] Chen X, Xu W, Song H W et al. Highly efficient LiYF4∶Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application[J]. ACS Applied Materials & Interfaces, 8, 9071-9079(2016).

    [88] Xie Y L, Shen B, Zhou B S et al. Progress in research on rare-earth upconversion luminescent nanomaterials and bio-sensing[J]. Chinese Journal of Lasers, 47, 0207017(2020).

    [89] Singh-Rachford T N, Castellano F N. Photon upconversion based on sensitized triplet-triplet annihilation[J]. Coordination Chemistry Reviews, 254, 2560-2573(2010).

    [90] Yakutkin V, Aleshchenkov S, Chernov S et al. Towards the IR limit of the triplet-triplet annihilation-supported up-conversion: tetraanthraporphyrin[J]. Chemistry, 14, 9846-9850(2008).

    [91] Baluschev S, Yakutkin V, Miteva T et al. A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum[J]. New Journal of Physics, 10, 013007(2008).

    [92] Trupke T, Shalav A, Richards B S et al. Efficiency enhancement of solar cells by luminescent up-conversion of sunlight[J]. Solar Energy Materials and Solar Cells, 90, 3327-3338(2006).

    [93] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chemical Reviews, 104, 139-174(2004).

    [94] Kong D Y, Quan Z W, Yang J et al. Avidin conjugation to up-conversion phosphor NaYF4∶Yb3+, Er3+ by the oxidation of the oligosaccharide chains[J]. Journal of Nanoparticle Research, 11, 821-829(2009).

    [95] Krämer K W, Biner D, Frei G et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors[J]. Chemistry of Materials, 16, 1244-1251(2004).

    [96] Suyver J F, Grimm J, van Veen M K et al. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+[J]. Journal of Luminescence, 117, 1-12(2006).

    [97] Wang G F, Qin W P, Wang L L et al. Intense ultraviolet upconversion luminescence from hexagonal NaYF4∶Yb3+/Tm3+ microcrystals[J]. Optics Express, 16, 11907-11914(2008).

    [98] Wu S L, Sun X Q, Zhu J C et al. Increasing electrical conductivity of upconversion materials by in situ binding with graphene[J]. Nanotechnology, 27, 345703(2016).

    [99] Du P, Lim J H, Kim S H et al. Facile synthesis of Gd2O3∶Ho3+/Yb3+ nanoparticles: an efficient upconverting material for enhanced photovoltaic performance of dye-sensitized solar cells[J]. Optical Materials Express, 6, 1896-1904(2016).

    [100] de Wild J, Meijerink A, Rath J K et al. Towards upconversion for amorphous silicon solar cells[J]. Solar Energy Materials and Solar Cells, 94, 1919-1922(2010).

    [101] Castro T, Manzani D, Ribeiro S J L. Up-conversion mechanisms in Er3+-doped fluoroindate glasses under 1550 nm excitation for enhancing photocurrent of crystalline silicon solar cell[J]. Journal of Luminescence, 200, 260-264(2018).

    [102] Gao Y, Hu Y B, Ren P et al. Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4∶Tb, Yb co-doped in glass-ceramics[J]. Journal of Alloys and Compounds, 667, 297-301(2016).

    Zhiyu Liu, Xusheng Qiao, Xianping Fan. Research Progress on Spectral Conversion Materials for Solar Cells[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516010
    Download Citation