• Journal of Inorganic Materials
  • Vol. 36, Issue 7, 745 (2021)
Ziyang LIN1, Yuchen CHANG2, Zhangfan WU1, Rong BAO3, Wenqing LIN3, and Deping WANG1、*
Author Affiliations
  • 11. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • 22. JALA (Group) Co., Ltd, Shanghai 200030, China
  • 33. Shanghai Sanyu Resin Co., Ltd, Shanghai 201818, China
  • show less
    DOI: 10.15541/jim20200484 Cite this Article
    Ziyang LIN, Yuchen CHANG, Zhangfan WU, Rong BAO, Wenqing LIN, Deping WANG. Different Simulated Body Fluid on Mineralization of Borosilicate Bioactive Glass-based Bone Cement[J]. Journal of Inorganic Materials, 2021, 36(7): 745 Copy Citation Text show less
    References

    [1] T KOKUBO, H TAKADAMA. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 27, 2907-2915(2006).

    [2] B YILMAZ, E PAZARCEVIREN A, A TEZCANER et al. Historical development of simulated body fluids used in biomedical applications: A review. Microchemical Journal, 155, 104713(2020).

    [3] B PALAZZO, D WALSH, M IAFISCO et al. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals. Acta Biomaterialia, 5, 1241-1252(2009).

    [4] S HUANG, K ZHOU, Z LI. Inhibition mechanism of aspartic acid on crystal growth of hydroxyapatite. Transactions of Nonferrous Metals Society of China, 17, 612-616(2007).

    [5] L MARTINS M, L IESSI I, P QUINTINO M et al. Glucose is an active chemical agent on degradation of hydroxyapatite nanostructure. Materials Chemistry and Physics, 240, 122166(2020).

    [6] C LI Z, Q REN, Y CUI J et al. Comparing the efficacy of hydroxyapatite nucleation regulated by amino acids, poly-amino acids and an amelogenin-derived peptide. CrystEngComm, 22, 3814-3823(2020).

    [7] Y WU Y, S YE, H YAO A et al. Effect of gas-foaming porogen- NaHCO3 and citric acid on the properties of injectable macroporous borate bioactive glass cement. Journal of Inorganic Materials, 32, 777-784(2017).

    [8] X XIE, B PANG L, H YAO A et al. Nanocement produced from borosilicate bioactive glass nanoparticles composited with alginate. Australian Journal of Chemistry, 72, 354-361(2019).

    [9] X CUI, J ZHAO C, F GU Y et al. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone. Journal of Materials Science-Materials in Medicine, 25, 733-745(2014).

    [10] L JANG H, K JIN, J LEE et al. Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano, 8, 634-641(2014).

    [11] H LUNA-DOMINGUEZ J, H TELLEZ-JIMENEZ, H HERNANDEZ- COCOLETZI et al. Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration. Ceramics International, 44, 22583-22591(2018).

    [12] D KIM H, L JANG H, Y AHN H et al. Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials, 112, 31-43(2017).

    [13] Y CHANG, R ZHAO, H WANG et al. A novel injectable whitlockite-containing borosilicate bioactive glass cement for bone repair. Journal of Non-Crystalline Solids, 547, 120291-1-11(2020).

    [14] H YAO A, P WANG D, H HUANG W et al. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. Journal of the American Ceramic Society, 90, 303-306(2007).

    [15] C MARQUES M R, R LOEBENBERG, M ALMUKAINZI. Simulated biological fluids with possible application in dissolution testing. Dissolution Technologies, 18, 15-28(2011).

    [16] T ZHANG J, Z LIU W, V SCHNITZLER et al. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomaterialia, 10, 1035-1049(2014).

    [17] T ANDERSEN, L STRAND B, K FORMO et al. Alginates as biomaterials in tissue engineering. Carbohydrate Chemistry, 37, 227-258(2011).

    [18] L JANG H, K LEE H, K JIN et al. Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. Journal of Materials Chemistry B, 3, 1342-1349(2015).

    [19] N IKAWA, T KIMURA, Y OUMI et al. Amino acid containing amorphous calcium phosphates and the rapid transformation into apatite. Journal of Materials Chemistry, 19, 4906-4913(2009).

    [20] D ZHANG G, D CHEN J, S YANG et al. Preparation of amino- acid-regulated hydroxyapatite particles by hydrothermal method. Materials Letters, 65, 572-574(2011).

    [22] Y GUO, Y LI, L LI. Mechanism of nano hydroxyapatite crystallization under hydrothermal conditions. Journal of Civil Aviation University of China, 25, 26-30(2007).

    [23] Y WANG, J WU, Y RUAN et al. Influence of aspartic acid concentration on shape of HAP. Technology and Development of Chemical Industry, 46, 21-23, 53(2017).

    [24] F WANG C, J JEONG K, J PARK H et al. Synthesis and formation mechanism of bone mineral, whitlockite nanocrystals in tri-solvent system. Journal of Colloid and Interface Science, 569, 1-11(2020).

    [25] L JANG H, G BIN ZHENG, J PARK et al. In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and beta-tricalcium phosphate. Advanced Healthcare Materials, 5, 128-136(2016).

    [26] H CHENG, R CHABOK, F GUAN X et al. Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomaterialia, 69, 342-351(2018).

    Ziyang LIN, Yuchen CHANG, Zhangfan WU, Rong BAO, Wenqing LIN, Deping WANG. Different Simulated Body Fluid on Mineralization of Borosilicate Bioactive Glass-based Bone Cement[J]. Journal of Inorganic Materials, 2021, 36(7): 745
    Download Citation