• Journal of Inorganic Materials
  • Vol. 35, Issue 11, 1214 (2020)
Danlei TANG1, Lihua JIA1、*, Zhenlong ZHAO1, Rui YANG1, Xin WANG1, and Xiangfeng GUO1、2、*
Author Affiliations
  • 1College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
  • 2College of Chemistry, Guangdong Institute of Petrochemical Technology, Maoming 525000, China
  • show less
    DOI: 10.15541/jim20200025 Cite this Article
    Danlei TANG, Lihua JIA, Zhenlong ZHAO, Rui YANG, Xin WANG, Xiangfeng GUO. EDTA Assistant Preparation and Gas Sensing Properties of Co3O4 Nanomaterials[J]. Journal of Inorganic Materials, 2020, 35(11): 1214 Copy Citation Text show less
    References

    [1] R ZHANG, S GAO, T ZHOU et al. Facile preparation of hierarchical structure based on p-type Co3O4 as toluene detecting sensor. Applied Surface Science, 503, 144-167(2020).

    [2] C ZHANG, L LI, L HOU et al. Fabrication of Co3O4 nanowires assembled on the surface of hollow carbon spheres for acetone gas sensing. Sensors and Actuators B: Chemical, 291, 130-140(2019).

    [3] Y LI, Z HUA, Y WU et al. Modified impregnation synthesis of Ru-loaded WO3 nanoparticles for acetone sensing. Sensors and Actuators B: Chemical, 265, 249-256(2018).

    [4] A MIRZAEI, G LEONARDI S, G NERI. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceramics International, 42, 15119-15141(2016).

    [5] O ANSARI M, A ANSARI S, H CHO M et al. Conducting polymer nanocomposites as gas sensors. Functional Polymers, 911-940(2019).

    [6] S PIRSA, N ALIZADEH. A selective DMSO gas sensor based on nanostructured conducting polypyrrole doped with sulfonate anion. Sensors and Actuators B: Chemical, 168, 303-309(2012).

    [7] X WANG, F CHEN, M YANG et al. Dispersed WO3 nanoparticles with porous nanostructure for ultrafast toluene sensing. Sensors Actuators B: Chemical, 289, 195-206(2019).

    [8] P SHANKAR, B RAVAPPAN J B. Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases-a review. Science Letters Journal, 4, 126-144(2015).

    [9] R LIANG J, Y ZHANG, R YANG et al. Room-temperature NH3 gas sensing property of VO2(B)/ZnO hierarchical heterogeneous composite with nanorod structure. Journal of Inorganic Materials, 33, 1323-1329(2018).

    [10] Y DU H, J PENG Y, J WANG et al. Preparation and gas sensing property of SnO2/ZnO composite hetero-nanofibers using two-step method. Journal of Inorganic Materials, 33, 453-461(2018).

    [11] F TANG Y, W XIE G, K ZHAO et al. Fabrication and gas sensing properties of aligned vanadium pentoxide micro-nano fiber membranes by electrospinning. Journal of Inorganic Materials, 29, 315-320(2014).

    [12] J KIM H, H LEE J. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sensors Actuators B: Chemical, 192, 607-627(2014).

    [13] L QUANG P, D CUONG N, T HOA T et al. Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance. Sensors Actuators B: Chemical, 270, 158-166(2018).

    [14] S DENG, X LIU, N CHEN et al. A highly sensitive VOC gas sensor using p-type mesoporous Co3O4 nanosheets prepared by a facile chemical coprecipitation method. Sensors Actuators B: Chemical, 233, 615-623(2016).

    [15] M XU J, P CHENG J. The advances of Co3O4 as gas sensing materials: a review. Journal of Alloys and Compounds, 686, 753-768(2016).

    [16] J DENG, R ZHANG, L WANG et al. Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sensors Actuators B: Chemical, 209, 449-455(2015).

    [17] Z ZHANG, L ZHU, Z WEN et al. Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sensors and Actuators B: Chemical, 238, 1052-1059(2017).

    [18] Y LIN, H JI, Z SHEN et al. Enhanced acetone sensing properties of Co3O4 nanosheets with highly exposed (111) planes. Journal of Materials Science: Materials in Electronics, 27, 2086-2095(2016).

    [19] R JIANG, L JIA, X GUO et al. Dimethyl sulfoxide-assisted hydrothermal synthesis of Co3O4-based nanorods for selective and sensitive diethyl ether sensing. Sensors Actuators B: Chemical, 290, 275-284(2019).

    [20] H ZHOU, M KANG, D WU et al. Synthesis and catalytic property of facet-controlled Co3O4 structures enclosed by (111) and (113) facets. CrystEngComm, 18, 5456-5462(2016).

    [21] F TONG, Y ZHAO, X QU et al. EDTA-complexing Sol-Gel synthesis of LaFeO3 nanostructures and their gas-sensing properties. Journal of Electronic Materials, 48, 982-990(2019).

    [22] Z ZHANG, Z WEN, Z YE et al. Synthesis of Co3O4/Ta2O5 heterostructure hollow nanospheres for enhanced room temperature ethanol gas sensor. Journal of Alloys and Compounds, 727, 436-443(2017).

    [23] J LU, Y JIANG, Y ZHANG et al. Preparation of gas sensing CoTiO3 nanocrystallites using EDTA as the chelating agent in a Sol-Gel process. Ceramics International, 41, 3714-3721(2015).

    [24] S XIONG, S CHEN J, W LOU X et al. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Advanced Functional Materials, 22, 861-871(2012).

    [25] K XU, L YANG, J ZOU et al. Fabrication of novel flower-like Co3O4 structures assembled by single-crystalline porous nanosheets for enhanced xylene sensing properties. Journal of Alloys and Compounds, 706, 116-125(2017).

    [26] T ZHOU, P LU, Z ZHANG et al. Perforated Co3O4 nanoneedles assembled in chrysanthemum-like Co3O4 structures for ultra-high sensitive hydrazine chemical sensor. Sensors Actuators B: Chemical, 235, 457-465(2016).

    [27] N JOSHI, F DA SILVA L, S JADHAV H et al. Yolk-shelled ZnCo2O4 microspheres: surface properties and gas sensing application. Sensors and Actuators B: Chemical, 257, 906-915(2018).

    [28] L HU, Q PENG, Y LI. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. Journal of the American Chemical Society, 130, 16136-16137(2008).

    [29] C GAO, Q MENG, K ZHAO et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic eeduction of CO2. Advanced Materials, 28, 6485-6490(2016).

    [30] T ZHOU, C ZHANG, P LU et al. Morphology controlled synthesis of Co3O4 nanostructures for hydrazine chemical sensor. Nanoscience and Nanotechnology Letters, 8, 634-640(2016).

    [31] C NI, D CAROLAN, C ROCKS et al. Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applications. Green Chemistry, 20, 2101-2109(2018).

    [32] Y NASSAR M. Size-controlled synthesis of CoCO3 and Co3O4 nanoparticles by free-surfactant hydrothermal method. Materials Letters, 94, 112-115(2013).

    [33] S BAI, L DU, J SUN et al. Preparation of reduced graphene oxide/ Co3O4 composites and sensing performance to toluene at low temperature. RSC Advances, 6, 60109-60116(2016).

    [34] T NAVALE S, C LIU, S GAIKAR P et al. Solution-processed rapid synthesis strategy of Co3O4 for the sensitive and selective detection of H2S. Sensors Actuators B: Chemical, 245, 524-532(2017).

    [35] J ZHANG, Y LIANG, J MAO et al. 3D microporous Co3O4-carbon hybrids biotemplated from butterfly wings as high performance VOCs gas sensor. Sensor Actuators B: Chemical, 235, 420-431(2016).

    [36] F LUO, J LI, Y LEI et al. Three-dimensional enoki mushroom-like Co3O4 hierarchitectures constructed by one-dimension nanowires for high-performance supercapacitors. Electrochimica Acta, 135, 495-502(2014).

    [37] X ZHANG, H ZHONG, L XU et al. Fabrication of Co3O4/PEI-GO composites for gas-sensing applications at room temperature. Materials Research Bulletin, 102, 108-115(2018).

    [38] G CHEN, X SI, J YU et al. Doping nano-Co3O4 surface with bigger nanosized Ag and its photocatalytic properties for visible light photodegradation of organic dyes. Applied Surface Science, 330, 191-199(2015).

    [39] K DEORI, K UJJAIN S, K SHARMA R et al. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Applied Materials & Interfaces, 5, 10665-10672(2013).

    [40] T YU, L CHENG X, X ZHANG et al. Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays. Journal of Materials Chemistry A, 3, 11991-11999(2015).

    Danlei TANG, Lihua JIA, Zhenlong ZHAO, Rui YANG, Xin WANG, Xiangfeng GUO. EDTA Assistant Preparation and Gas Sensing Properties of Co3O4 Nanomaterials[J]. Journal of Inorganic Materials, 2020, 35(11): 1214
    Download Citation