• Chinese Journal of Lasers
  • Vol. 49, Issue 11, 1106001 (2022)
Shangjun Yang1, Xizheng Ke1、2、3、*, Jiali Wu1, and Xuguang Liu4
Author Affiliations
  • 1School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
  • 2Shaanxi Civil-Military Integration Key Laboratory of Intelligence Collaborative Networks, Xi'an 710048, Shaanxi, China
  • 3School of Physics and Telecommunications Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
  • 4Department of Communication Engineering, School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
  • show less
    DOI: 10.3788/CJL202249.1106001 Cite this Article Set citation alerts
    Shangjun Yang, Xizheng Ke, Jiali Wu, Xuguang Liu. Fast Alignment of Wireless Optical Communication Using Two-Dimensional Mirror[J]. Chinese Journal of Lasers, 2022, 49(11): 1106001 Copy Citation Text show less
    References

    [1] Zhao B Q, Yu X N, Dong Y et al. Tracking performance of mirrors in space laser communication networking[J]. Laser & Optoelectronics Progress, 58, 0906007(2021).

    [2] Sun J, Huang P M, Yao Z S. Performance of satellite-to-ground laser communications under the influence of atmospheric turbulence and platform micro-vibration[J]. Laser & Optoelectronics Progress, 58, 0301003(2021).

    [3] Li Q, Liu L, Ma X F et al. Development of multitarget acquisition, pointing, and tracking system for airborne laser communication[J]. IEEE Transactions on Industrial Informatics, 15, 1720-1729(2019).

    [4] Sun X B, Kong M W, Alkhazragi O et al. Non-line-of-sight methodology for high-speed wireless optical communication in highly turbid water[J]. Optics Communications, 461, 125264(2020).

    [5] Lin J M, Du Z H, Yu C Y et al. Machine-vision-based acquisition, pointing, and tracking system for underwater wireless optical communications[J]. Chinese Optics Letters, 19, 050604(2021).

    [6] Lim H C, Choi C S, Sung K P et al. Centroid error analysis of beacon tracking under atmospheric turbulence for optical communication links[J]. Remote Sensing, 13, 1931(2021).

    [7] Ke X Z, Wu J L, Yang S J. Research progress and prospect of atmospheric turbulence for wireless optical communication[J]. Chinese Journal of Radio Science, 36, 323-339(2021).

    [8] Chen M N, Jin X Q, Li S B et al. Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems[J]. Chinese Optics Letters, 19, 110601(2021).

    [9] Ke X Z, Lei S C, Yang P S. Beam coaxial alignment detection in atmospheric laser communication[J]. Chinese Journal of Lasers, 43, 0606003(2016).

    [10] Ke X Z, Zhang P. A tracking control system and tracking control method for wireless optical communication[P].

    [11] Ke X Z, Lu N, Zhao L. An automatic beam capture device and a beam capture method[P].

    [12] Dabiri M T, Sadough S M S, Ansari I S. Tractable optical channel modeling between UAVs[J]. IEEE Transactions on Vehicular Technology, 68, 11543-11550(2019).

    [13] Zhang M, Li B, Tong S F. A new composite spiral scanning approach for beaconless spatial acquisition and experimental investigation of robust tracking control for laser communication system with disturbance[J]. IEEE Photonics Journal, 12, 7906212(2020).

    [14] Xiao Y J, Dong R, Xiong Z et al. Research on fixed-point acquisition in optical communication based on GPS[J]. Semiconductor Optoelectronics, 32(2011).

    [15] Xiao Y J, Ai Y, Dong R et al. Experiment of non-maneuvering target tracking based on ATP system[J]. Infrared and Laser Engineering, 41, 2439-2443(2012).

    [16] Tan L Y, Wu S C, Han Q Q et al. Coarse tracking of periscope-type satellite optical communication terminals[J]. Optics and Precision Engineering, 20, 270-276(2012).

    [17] Ke X Z, Wang J. A spot alignment method based on four quadrant detector[P].

    [18] Chen S J, Zhang L, Wang J Y. Effects of digital to analog converter resolution on ATP system tracking accuracy[J]. Chinese Journal of Lasers, 44, 0806004(2017).

    [19] Chen M W, Yang Y P, Jia X T et al. Investigation of positioning algorithm and method for increasing the linear measurement range for four-quadrant detector[J]. Optik, 124, 6806-6809(2013).

    [20] Liu Y Q, Jiang H L, Tong S F. Study on stabilizational tracking technology for atmospheric laser communication system[J]. Chinese Journal of Lasers, 38, 0505005(2011).

    [21] Li S M, Zhang Y Q. Annular facula detection and error compensation of four-quadrant photoelectric detector in space laser communication[J]. Chinese Journal of Lasers, 44, 1106005(2017).

    [22] Vo Q S, Zhang X D, Fang F Z. Extended the linear measurement range of four-quadrant detector by using modified polynomial fitting algorithm in micro-displacement measuring system[J]. Optics & Laser Technology, 112, 332-338(2019).

    [23] Bao J Y, Xing F, Sun T et al. CMOS imager non-uniformity response correction-based high-accuracy spot target localization[J]. Applied Optics, 58, 4560-4568(2019).

    [24] Zhang W G, Guo W, Zhang C W et al. An improved method for spot position detection of a laser tracking and positioning system based on a four-quadrant detector[J]. Sensors, 19, 4722(2019).

    [25] Chen G, Dong Z R, Geng J X et al. 155/622 Mb/s multiple transmitter laser communication systems[J]. Chinese Journal of Lasers, 31, 583-587(2004).

    [26] Tolker-Nielsen T, Oppenhauser G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[J]. Proceedings of SPIE, 4635, 97-104(2002).

    [27] Liu W, Yao K N, Huang D N et al. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency[J]. Optics Express, 24, 13288-13302(2016).

    [28] Chang Q B, Chen W S, Liu J K et al. Development of a novel two-DOF piezo-driven fast steering mirror with high stiffness and good decoupling characteristic[J]. Mechanical Systems and Signal Processing, 159, 107851(2021).

    [29] Dubra A, Massa J S, Paterson C. Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors[J]. Optics Express, 13, 9062-9070(2005).

    [30] Zuo T, Huang H B, Xiao Y J. Fine tracking system design of space optical communication based on self-tuning control[J]. Chinese Journal of Scientific Instrument, 33, 1181-1186(2012).

    [31] Jono T, Toyoshima M, Takahashi N et al. Laser tracking test under satellite microvibrational disturbances by OICETS ATP system[J]. Proceedings of SPIE, 4714, 97-104(2002).

    [32] Borrello M. A multi stage pointing acquisition and tracking (PAT) control system approach for air to air laser communications[C], 3975-3980(2005).

    [33] Suite M R, Burris H R, Moore C I et al. Fast steering mirror implementation for reduction of focal-spot wander in a long-distance free-space optical communication link[J]. Proceedings of SPIE, 5160, 439-446(2004).

    [34] Wang F C, Wang Y T, Tian D P. Perfect tracking control for fast-steering mirror driven by voice coil motor[J]. Optics and Precision Engineering, 28, 1997-2006(2020).

    [35] Wu X, Chen S H, Shi B Y et al. High-powered voice coil actuator for fast steering mirror[J]. Optical Engineering, 50, 023002(2011).

    [36] Chen G Z, Xu S Q, Liu P K et al. Structural design and bandwidth characteristic of a fast steering mirror with large travel range[J]. Optics and Precision Engineering, 28, 90-101(2020).

    [37] Pokorny P. One-mirror and two-mirror three-dimensional optical scanners: position and accuracy of laser beam spot[J]. Applied Optics, 53, 2730-2740(2014).

    Shangjun Yang, Xizheng Ke, Jiali Wu, Xuguang Liu. Fast Alignment of Wireless Optical Communication Using Two-Dimensional Mirror[J]. Chinese Journal of Lasers, 2022, 49(11): 1106001
    Download Citation