• Advanced Photonics Nexus
  • Vol. 1, Issue 1, 016002 (2022)
Xutong Wang1, Sheng Yu1, Shengshuai Liu1, Kai Zhang1, Yanbo Lou1, Wei Wang1, and Jietai Jing1、2、3、4、*
Author Affiliations
  • 1East China Normal University, Joint Institute of Advanced Science and Technology, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 2CAS Center for Excellence in Ultra-intense Laser Science, Shanghai, China
  • 3Zhejiang University, Department of Physics, Hangzhou, China
  • 4Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • show less
    DOI: 10.1117/1.APN.1.1.016002 Cite this Article Set citation alerts
    Xutong Wang, Sheng Yu, Shengshuai Liu, Kai Zhang, Yanbo Lou, Wei Wang, Jietai Jing. Deterministic generation of large-scale hyperentanglement in three degrees of freedom[J]. Advanced Photonics Nexus, 2022, 1(1): 016002 Copy Citation Text show less
    References

    [1] R. Horodecki et al. Quantum entanglement. Rev. Mod. Phys., 81, 865-942(2009).

    [2] P. G. Kwiat. Hyper-entangled states. J. Mod. Opt., 44, 2173-2184(1997).

    [3] J. T. Barreiro et al. Generation of hyperentangled photon pairs. Phys. Rev. Lett., 95, 260501(2005).

    [4] J.-W. Pan et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys., 84, 777-838(2012).

    [5] S. L. Braunstein, P. van Loock. Quantum information with continuous variables. Rev. Mod. Phys., 77, 513-577(2005).

    [6] S. Takeda et al. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature, 500, 315-318(2013).

    [7] O. Morin et al. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics, 8, 570-574(2014).

    [8] U. L. Andersen et al. Hybrid discrete- and continuous-variable quantum information. Nat. Phys., 11, 713-719(2015).

    [9] W.-B. Gao et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nat. Phys., 6, 331-335(2010).

    [10] Z. Xie et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photonics, 9, 536-542(2015).

    [11] M. A. Ciampini et al. Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl., 5, e16064(2016).

    [12] X.-L. Wang et al. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett., 120, 260502(2018).

    [13] T.-M. Zhao, Y. S. Ihn, Y.-H. Kim. Direct generation of narrow-band hyperentangled photons. Phys. Rev. Lett., 122, 123607(2019).

    [14] C. Reimer et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys., 15, 148-153(2019).

    [15] B. C. dos Santos, K. Dechoum, A. Z. Khoury. Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum. Phys. Rev. Lett., 103, 230503(2009).

    [16] K. Liu et al. Experimental generation of continuous-variable hyperentanglement in an optical parametric oscillator. Phys. Rev. Lett., 113, 170501(2014).

    [17] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [18] N. Bozinovic et al. terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [19] T. Lei et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [20] Y. Wen et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems. Optica, 7, 254-262(2020).

    [21] M. Pysher et al. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett., 107, 030505(2011).

    [22] M. Chen, N. C. Menicucci, O. Pfister. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett., 112, 120505(2014).

    [23] J. Roslund et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics, 8, 109-112(2014).

    [24] S. Yokoyama et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photonics, 7, 982-986(2013).

    [25] M. V. Larsen et al. Deterministic generation of a two-dimensional cluster state. Science, 366, 369-372(2019).

    [26] W. Asavanant et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science, 366, 373-376(2019).

    [27] P. Jouguet et al. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics, 7, 378-381(2013).

    [28] B. Heim et al. Atmospheric continuous-variable quantum communication. New J. Phys., 16, 113018(2014).

    [29] J. Sun et al. Spatial multiplexing of squeezed light by coherence diffusion. Phys. Rev. Lett., 123, 203604(2019).

    [30] K. Zhang et al. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing processes. Phys. Rev. Lett., 124, 090501(2020).

    [31] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [32] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [33] M. P. J. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [34] V. D’Ambrosio et al. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun., 4, 2432(2013).

    [35] H. Rubinsztein-Dunlop et al. Roadmap on structured light. J. Opt., 19, 013001(2017).

    [36] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [37] L. Du et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [38] I. Gianani et al. Transmission of vector vortex beams in dispersive media. Adv. Photonics, 2, 036003(2020).

    [39] Y. Chen et al. Phase-matching controlled orbital angular momentum conversion in periodically poled crystals. Phys. Rev. Lett., 125, 143901(2020).

    [40] Y. Wen et al. Arbitrary multiplication and division of the orbital angular momentum of light. Phys. Rev. Lett., 124, 213901(2020).

    [41] D. Mao et al. Generation of polarization and phase singular beams in fibers and fiber lasers. Adv. Photonics, 3, 014002(2021).

    [42] X. Fang et al. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv. Photonics, 3, 015001(2021).

    [43] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [44] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021).

    [45] A. Mair et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [46] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305-310(2007).

    [47] A. C. Dada et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys., 7, 677-680(2011).

    [48] R. Fickler et al. Quantum entanglement of high angular momenta. Science, 338, 640-643(2012).

    [49] F. Cardano et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv., 1, e1500087(2015).

    [50] M. Erhard et al. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 7, 17146(2018).

    [51] D. Cozzolino et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photonics, 1, 046005(2019).

    [52] A. M. Marino et al. Delocalized correlations in twin light beams with orbital angular momentum. Phys. Rev. Lett., 101, 093602(2008).

    [53] M. Lassen, G. Leuchs, U. L. Andersen. Continuous variable entanglement and squeezing of orbital angular momentum states. Phys. Rev. Lett., 102, 163602(2009).

    [54] X. Pan et al. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor. Phys. Rev. Lett., 123, 070506(2019).

    [55] S. Li, X. Pan, Y. Ren et al. Deterministic generation of orbital-angular-momentum multiplexed tripartite entanglement. Phys. Rev. Lett., 124, 083605(2020).

    [56] W. N. Plick et al. The forgotten quantum number: a short note on the radial modes of Laguerre–Gauss beams(2013).

    [57] E. Karimi et al. Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference. Phys. Rev. A, 89, 013829(2014).

    [58] Y. Zhou et al. Sorting photons by radial quantum number. Phys. Rev. Lett., 119, 263602(2017).

    [59] X. Gu et al. Gouy phase radial mode sorter for light: concepts and experiments. Phys. Rev. Lett., 120, 103601(2018).

    [60] L. Chen et al. Realization of the Einstein-Podolsky-Rosen paradox using radial position and radial momentum variables. Phys. Rev. Lett., 123, 060403(2019).

    [61] J. Mendoza-Hernández et al. Laguerre–Gauss beams versus Bessel beams showdown: peer comparison. Opt. Lett., 40, 3739-3742(2015).

    [62] W. N. Plick, M. Krenn. Physical meaning of the radial index of Laguerre–Gauss beams. Phys. Rev. A, 92, 063841(2015).

    [63] V. D. Salakhutdinov, E. R. Eliel, W. Löffler. Full-field quantum correlations of spatially entangled photons. Phys. Rev. Lett., 108, 173604(2012).

    [64] M. Krenn et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. U. S. A., 111, 6243-6247(2014).

    [65] F. Brandt et al. High-dimensional quantum gates using full-field spatial modes of photons. Optica, 7, 98-107(2020).

    [66] R. Simon. Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett., 84, 2726-2729(2000).

    [67] C. K. Law, J. H. Eberly. Analysis and interpretation of high transverse entanglement in optical parametric down conversion. Phys. Rev. Lett., 92, 127903(2004).

    [68] V. Boyer et al. Entangled images from four-wave mixing. Science, 321, 544-547(2008).

    [69] C. S. Embrey et al. Observation of localized multi-spatial-mode quadrature squeezing. Phys. Rev. X, 5, 031004(2015).

    [70] M. Krenn et al. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 16, 113028(2014).

    [71] S. Liu et al. Increasing two-photon entangled dimensions by shaping input-beam profiles. Phys. Rev. A, 101, 052324(2020).

    [72] T. Kashiwazaki et al. Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide. APL Photonics, 5, 036104(2020).

    [73] N. K. Fontaine et al. Laguerre–Gaussian mode sorter. Nat. Commun., 10, 1865(2019).

    [74] R. Fickler et al. Full-field mode sorter using two optimized phase transformations for high-dimensional quantum cryptography. J. Opt., 22, 024001(2020).

    [75] S. Shi et al. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys. Rev. Lett., 125, 070502(2020).

    [76] S. Liu, Y. Lou, J. Jing. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun., 11, 3875(2020).

    [77] J. Jing et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 90, 167903(2003).

    [78] S. Pirandola et al. Advances in quantum teleportation. Nat. Photonics, 9, 641-652(2015).

    [79] Y. Zhou et al. Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett., 121, 150502(2018).

    [80] X.-L. Wang et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516-519(2015).

    [81] L. Banchi, S. L. Braunstein, S. Pirandola. Quantum fidelity for arbitrary Gaussian states. Phys. Rev. Lett., 115, 260501(2015).

    Xutong Wang, Sheng Yu, Shengshuai Liu, Kai Zhang, Yanbo Lou, Wei Wang, Jietai Jing. Deterministic generation of large-scale hyperentanglement in three degrees of freedom[J]. Advanced Photonics Nexus, 2022, 1(1): 016002
    Download Citation