• Laser & Optoelectronics Progress
  • Vol. 56, Issue 11, 110501 (2019)
Wentao Zhang1, Yueyue Yang1, Yuting Zhang1, Ping Wu2, Xianming Xiong1, and Hao Du1、*
Author Affiliations
  • 1 School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • 2 Shanghai Micro Electronics Equipment (Group) Co., Ltd., Shanghai 201203, China
  • show less
    DOI: 10.3788/LOP56.110501 Cite this Article Set citation alerts
    Wentao Zhang, Yueyue Yang, Yuting Zhang, Ping Wu, Xianming Xiong, Hao Du. Detection of Rotation Angle of Reflective Grating Based on Interference Method[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110501 Copy Citation Text show less
    References

    [1] Dong J H, Tian X Z, Li Z L et al. Development of 100 nm step-scanning projection photographic machine[J]. Ome Information, 21, 20-24(2004).

         Dong J H, Tian X Z, Li Z L et al. Development of 100 nm step-scanning projection photographic machine[J]. Ome Information, 21, 20-24(2004).

    [2] Yang X D, Xia L, Ma W X et al. Experiment of real-time monitoring and adjusting of rotation error about tiled gratings[J]. Chinese Journal of Lasers, 34, 1222-1226(2007).

         Yang X D, Xia L, Ma W X et al. Experiment of real-time monitoring and adjusting of rotation error about tiled gratings[J]. Chinese Journal of Lasers, 34, 1222-1226(2007).

    [3] Hornung M, Bödefeld R, Kessler A et al. Spectrally resolved and phase-sensitive far-field measurement for the coherent addition of laser pulses in a tiled grating compressor[J]. Optics Letters, 35, 2073-2075(2010). http://www.ncbi.nlm.nih.gov/pubmed/20548390

         Hornung M, Bödefeld R, Kessler A et al. Spectrally resolved and phase-sensitive far-field measurement for the coherent addition of laser pulses in a tiled grating compressor[J]. Optics Letters, 35, 2073-2075(2010). http://www.ncbi.nlm.nih.gov/pubmed/20548390

    [4] Xia L, Yang X D, Xu G et al. Tiled-grating rotation detecting technology[J]. Chinese Journal of Lasers, 38, 0308001(2011).

         Xia L, Yang X D, Xu G et al. Tiled-grating rotation detecting technology[J]. Chinese Journal of Lasers, 38, 0308001(2011).

    [5] Lu Y X, Qi X D, Mi X T et al. Detection and calculation of mosaic grating error based on wavefront method[J]. Acta Optica Sinica, 36, 0505001(2016).

         Lu Y X, Qi X D, Mi X T et al. Detection and calculation of mosaic grating error based on wavefront method[J]. Acta Optica Sinica, 36, 0505001(2016).

    [6] Lu Y X, Qi X D, Yu H L et al. Precision analysis of grating replicated mosaic error based on the principle of Fraunhofer[J]. Chinese Journal of Lasers, 43, 0508005(2016).

         Lu Y X, Qi X D, Yu H L et al. Precision analysis of grating replicated mosaic error based on the principle of Fraunhofer[J]. Chinese Journal of Lasers, 43, 0508005(2016).

    [7] Cong M, Qi X D, Mi X T et al. Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic[J]. Optics and Precision Engineering, 25, 3027-3033(2017).

         Cong M, Qi X D, Mi X T et al. Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic[J]. Optics and Precision Engineering, 25, 3027-3033(2017).

    [8] Sharma A K, Joshi A S, Naik P A et al. Active phase locking of a tiled two-grating assembly for high-energy laser pulse compression using simultaneous controls from far-field profiles and interferometry[J]. Applied Physics B, 123, 117(2017). http://link.springer.com/10.1007/s00340-017-6682-2

         Sharma A K, Joshi A S, Naik P A et al. Active phase locking of a tiled two-grating assembly for high-energy laser pulse compression using simultaneous controls from far-field profiles and interferometry[J]. Applied Physics B, 123, 117(2017). http://link.springer.com/10.1007/s00340-017-6682-2

    [9] Panchuk V E, Klochkova V G, Yushkin M V et al. The high-resolution spectrograph of the 6-m Large Azimuthal Telescope (BTA)[J]. Journal of Optical Technology, 76, 87-97(2009). http://mnras.oxfordjournals.org/external-ref?access_num=10.1364/JOT.76.000087&link_type=DOI

         Panchuk V E, Klochkova V G, Yushkin M V et al. The high-resolution spectrograph of the 6-m Large Azimuthal Telescope (BTA)[J]. Journal of Optical Technology, 76, 87-97(2009). http://mnras.oxfordjournals.org/external-ref?access_num=10.1364/JOT.76.000087&link_type=DOI

    [10] Sakanoi T, Kasaba Y, Kagitani M et al. Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation[J]. Proceedings of SPIE, 9147, 91478D(2014). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2055877

         Sakanoi T, Kasaba Y, Kagitani M et al. Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation[J]. Proceedings of SPIE, 9147, 91478D(2014). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2055877

    [11] Kelly J H, Waxer L J, Bagnoud V et al. OMEGA EP: high-energy petawatt capability for the OMEGA laser facility[J]. Journal de Physique IV (Proceedings), 133, 75-80(2006). http://adsabs.harvard.edu/abs/2006jphy4.133...75k

         Kelly J H, Waxer L J, Bagnoud V et al. OMEGA EP: high-energy petawatt capability for the OMEGA laser facility[J]. Journal de Physique IV (Proceedings), 133, 75-80(2006). http://adsabs.harvard.edu/abs/2006jphy4.133...75k

    [12] Blanchot N, Bignon E, Coïc H et al. Multi-petawatt high-energy laser project on the LIL facility in Aquitaine[J]. Proceedings of SPIE, 5975, 59750C(2006). http://spie.org/Publications/Proceedings/Paper/10.1117/12.675495

         Blanchot N, Bignon E, Coïc H et al. Multi-petawatt high-energy laser project on the LIL facility in Aquitaine[J]. Proceedings of SPIE, 5975, 59750C(2006). http://spie.org/Publications/Proceedings/Paper/10.1117/12.675495

    [13] Li Z L, Wang X, Mu J et al. Two-pass full-tiled grating compressor with real-time monitoring and control for XG-III petawatt-class laser facility[J]. Laser Physics, 25, 015301(2015). http://adsabs.harvard.edu/abs/2015LaPhy..25a5301L

         Li Z L, Wang X, Mu J et al. Two-pass full-tiled grating compressor with real-time monitoring and control for XG-III petawatt-class laser facility[J]. Laser Physics, 25, 015301(2015). http://adsabs.harvard.edu/abs/2015LaPhy..25a5301L

    [14] Zhang S, Zhang J W, Wang Y et al. Theoretical and experimental research of tiling error compensation method based on a small-size mirror for large-aperture tiled-grating compressors[J]. Optics & Laser Technology, 104, 190-196(2018). http://www.sciencedirect.com/science/article/pii/S0030399217310162

         Zhang S, Zhang J W, Wang Y et al. Theoretical and experimental research of tiling error compensation method based on a small-size mirror for large-aperture tiled-grating compressors[J]. Optics & Laser Technology, 104, 190-196(2018). http://www.sciencedirect.com/science/article/pii/S0030399217310162

    [15] Qian G L, Wu J H, Li C M et al. Compensational method for aberration in mosaic system of holographic grating[J]. Acta Optica Sinica, 37, 0305001(2017).

         Qian G L, Wu J H, Li C M et al. Compensational method for aberration in mosaic system of holographic grating[J]. Acta Optica Sinica, 37, 0305001(2017).

    Wentao Zhang, Yueyue Yang, Yuting Zhang, Ping Wu, Xianming Xiong, Hao Du. Detection of Rotation Angle of Reflective Grating Based on Interference Method[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110501
    Download Citation