• Journal of Semiconductors
  • Vol. 43, Issue 9, 093101 (2022)
Zhouyu Tong1, Mingxuan Bu1, Yiqiang Zhang2, Deren Yang1、3, and Xiaodong Pi1、3、*
Author Affiliations
  • 1State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2School of Materials Science and Engineering & College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
  • 3Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311215, China
  • show less
    DOI: 10.1088/1674-4926/43/9/093101 Cite this Article
    Zhouyu Tong, Mingxuan Bu, Yiqiang Zhang, Deren Yang, Xiaodong Pi. Hyperdoped silicon: Processing, properties, and devices[J]. Journal of Semiconductors, 2022, 43(9): 093101 Copy Citation Text show less
    References

    [1] C B Simmons, A J Akey, J P Mailoa et al. Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band. Adv Funct Mater, 24, 2852(2014).

    [2] X D Pi. Doping silicon nanocrystals with boron and phosphorus. J Nanomater, 2012, 3(2012).

    [3] I Marri, E Degoli, S Ossicini. Doped and codoped silicon nanocrystals: The role of surfaces and interfaces. Prog Surface Sci, 92, 375(2017).

    [4] M Wang, A Debernardi, Y Berencén et al. Breaking the doping limit in silicon by deep impurities. Phys Rev Applied, 11, 054039(2019).

    [5] K Sánchez, I Aguilera, P Palacios et al. Formation of a reliable intermediate band in Si heavily coimplanted with chalcogens (S, Se, Te) and group III elements (B, Al). Phys Rev B, 82, 165201(2010).

    [6] F Liu, S Prucnal, Y Berencén et al. Realizing the insulator-to-metal transition in Se-hyperdoped Si via non-equilibrium material processing. J Phys D, 50, 415102(2017).

    [7] J Olea, G González-Díaz, D Pastor et al. Electronic transport properties of Ti-impurity band in Si. J Phys D, 42, 085110(2009).

    [8] P Dai, Y Zhang, M P Sarachik. Critical conductivity exponent for Si:B. Phys Rev Lett, 66, 1914(1991).

    [9] K F Wang, H Z Shao, K Liu et al. Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon. Appl Phys Lett, 107, 112106(2015).

    [10] E García-Hemme, R García-Hernansanz, J Olea et al. Far infrared photoconductivity in a silicon based material: Vanadium supersaturated silicon. Appl Phys Lett, 103, 032101(2013).

    [11] G Haberfehlner, M J Smith, J C Idrobo et al. Selenium segregation in femtosecond-laser hyperdoped silicon revealed by electron tomography. Microsc Microanal, 19, 716(2013).

    [12] A Luque, A Martí, E Antolín et al. Intermediate bands versus levels in non-radiative recombination. Phys B, 382, 320(2006).

    [13] M Wang, R Hübner, C Xu et al. Thermal stability of Te-hyperdoped Si: Atomic-scale correlation of the structural, electrical, and optical properties. Phys Rev Mater, 3, 044606(2019).

    [14] S Zhou, X D Pi, Z Y Ni et al. Boron- and phosphorus-hyperdoped silicon nanocrystals. Part Part Syst Charact, 32, 213(2015).

    [15] D J Rowe, J S Jeong, K A Mkhoyan et al. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. Nano Lett, 13, 1317(2013).

    [16] K F Wang, S C Qu, D W Liu et al. Large enhancement of sub-band-gap light absorption of sulfur hyperdoped silicon by surface dome structures. Mater Lett, 107, 50(2013).

    [17] M J Sher, Y T Lin, M T Winkler et al. Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation. J Appl Phys, 113, 063520(2013).

    [18] C B Simmons, A J Akey, J J Krich et al. Deactivation of metastable single-crystal silicon hyperdoped with sulfur. J Appl Phys, 114, 243514(2013).

    [19] W Yang, N Ferdous, P J Simpson et al. Evidence for vacancy trapping in Au-hyperdoped Si following pulsed laser melting. APL Mater, 7, 101124(2019).

    [20] J M Bao, M Tabbal, T Kim et al. Point defect engineered Si sub-bandgap light-emitting diode. Opt Express, 15, 6727(2007).

    [21] P G Carey, K Bezjian, T W Sigmon et al. Fabrication of submicrometer MOSFET's using gas immersion laser doping (GILD). IEEE Electron Device Lett, 7, 440(1986).

    [22] C Wen, Z Q Shi, Z J Wang et al. Zinc-hyperdoped silicon nanocrystalline layers prepared via nanosecond laser melting for broad light absorption. Opt Laser Technol, 144, 107415(2021).

    [23] F F Komarov, N S Nechaev, G D Ivlev et al. Structural and optical properties of Si hyperdoped with Te by ion implantation and pulsed laser annealing. Vacuum, 178, 109434(2020).

    [24] L Eriksson, J A Davies, J W Mayer. Ion implantation studies in silicon. Science, 163, 627(1969).

    [25] P G Kik, A Polman, S Libertino et al. Design and performance of an erbium-doped silicon waveguide detector operating at 1.5µm. J Light Technol, 20, 862(2002).

    [26] X Y Zhao, K M Lin, S Gao et al. Efficient Er/O doped silicon photodiodes at communication wavelengths by deep cooling. Adv Mater Technol, 2100137(2021).

    [27] J P Mailoa, A J Akey, C B Simmons et al. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Nat Commun, 5, 1(2014).

    [28] D Recht, J T Sullivan, R Reedy et al. Controlling dopant profiles in hyperdoped silicon by modifying dopant evaporation rates during pulsed laser melting. Appl Phys Lett, 100, 112112(2012).

    [29] S J Li, P D Han. Effects of high temperature annealing and laser irradiation on activation rate of phosphorus. J Semicond, 41, 122701(2020).

    [30] B P Bob, A Kohno, S Charnvanichborikarn et al. Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting. J Appl Phys, 107, 123506(2010).

    [31] W Yang, Q Hudspeth, P K Chow et al. Atomistic mechanisms for the thermal relaxation of Au-hyperdoped Si. Phys Rev Appl, 12, 024015(2019).

    [32] S Q Lim, C T K Lew, P K Chow et al. Toward understanding and optimizing Au-hyperdoped Si infrared photodetectors. APL Mater, 8, 061109(2020).

    [33] S Q Lim, A J Akey, E Napolitani et al. A critical evaluation of Ag- and Ti-hyperdoped Si for Si-based infrared light detection. J Appl Phys, 129, 065701(2021).

    [34] S Prucnal, L Rebohle, W Skorupa. Doping by flash lamp annealing. Mater Sci Semicond Process, 62, 115(2017).

    [35] Y Berencén, S Prucnal, F Liu et al. Room-temperature short-wavelength infrared Si photodetector. Sci Rep, 7, 43688(2017).

    [36] R A McMahon, M P Smith, K A Seffen et al. Flash-lamp annealing of semiconductor materials—Applications and process models. Vacuum, 81, 1301(2007).

    [37] S Q Zhou, F Liu, S Prucnal et al. Hyperdoping silicon with selenium: Solidvs. liquid phase epitaxy. Sci Rep, 5, 8329(2015).

    [38] M Wang, Y Yu, S Prucnal et al. Mid- and far-infrared localized surface plasmon resonances in chalcogen-hyperdoped silicon. Nanoscale, 14, 2826(2022).

    [39] K Wang, J S Gao, H G Yang et al. Study on top sulfur hyperdoping layer covering microstructured Si by fs-laser irradiation. Appl Surf Sci, 464, 502(2019).

    [40] S H Pan, D Recht, S Charnvanichborikarn et al. Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens. Appl Phys Lett, 98, 121913(2011).

    [41] H B Sun, X L Liu, L Zhao et al. Mid-long wavelength infrared absorptance of hyperdoped silicon via femtosecond laser microstructuring. Opt Express, 30, 1808(2022).

    [42] M V Limaye, S C Chen, C Y Lee et al. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques. Sci Rep, 5, 11466(2015).

    [43] J E Carey, C H Crouch, M Y Shen et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt Lett, 30, 1773(2005).

    [44] T Gimpel, I Höger, F Falk et al. Electron backscatter diffraction on femtosecond laser sulfur hyperdoped silicon. Appl Phys Lett, 101, 111911(2012).

    [45] J M Warrender. Laser hyperdoping silicon for enhanced infrared optoelectronic properties. Appl Phys Rev, 3, 031104(2016).

    [46] C H Crouch, J E Carey, M Shen et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Appl Phys A, 79, 1635(2004).

    [47] M J Smith, Y T Lin, M J Sher et al. Pressure-induced phase transformations during femtosecond-laser doping of silicon. J Appl Phys, 110, 053524(2011).

    [48] T Gimpel, K M Guenther, S Kontermann et al. Current-voltage characteristic and sheet resistances after annealing of femtosecond laser processed sulfur emitters for silicon solar cells. Appl Phys Lett, 105, 053504(2014).

    [49] S K Sundaram, E Mazur. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater, 1, 217(2002).

    [50] C H Crouch, J E Carey, J M Warrender et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl Phys Lett, 84, 1850(2004).

    [51] B Franta, D Pastor, H H Gandhi et al. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing. J Appl Phys, 118, 225303(2015).

    [52] J Olea, M Toledano-Luque, D Pastor et al. High quality Ti-implanted Si layers above the Mott limit. J Appl Phys, 107, 103524(2010).

    [53] I Umezu, M Naito, D Kawabe et al. Hyperdoping of silicon with deep-level impurities by pulsed YAG laser melting. Appl Phys A, 117, 155(2014).

    [54] Y B Zhang, X H Li, X M Lin et al. Negative photoconductivity in sulfur-hyperdoped silicon film. Mater Sci Semicond Process, 98, 106(2019).

    [55] P G Carey, T W Sigmon. In-situ doping of silicon using the gas immersion laser doping (GILD) process. Appl Surf Sci, 43, 325(1989).

    [56] K Hoummada, F Dahlem, T Kociniewski et al. Absence of boron aggregates in superconducting silicon confirmed by atom probe tomography. Appl Phys Lett, 101, 182602(2012).

    [57] M J Sher, E Mazur. Intermediate band conduction in femtosecond-laser hyperdoped silicon. Appl Phys Lett, 105, 032103(2014).

    [58] M J Sher, C B Simmons, J J Krich et al. Picosecond carrier recombination dynamics in chalcogen-hyperdoped silicon. Appl Phys Lett, 105, 053905(2014).

    [59] S Meng-Ju, N M Mangan, M J Smith et al. Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: Dopant incorporation mechanism. J Appl Phys, 117, 125301(2015).

    [60] R O Carlson, R N Hall, E M Pell. Sulfur in silicon. J Phys Chem Solids, 8, 81(1959).

    [61] X Dong, N Li, Z Zhu et al. A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation. Appl Phys Lett, 104, 091907(2014).

    [62] C R Alpass, J D Murphy, R J Falster et al. Nitrogen diffusion and interaction with dislocations in single-crystal silicon. J Appl Phys, 105, 013519(2009).

    [63] X Dong, Y Y Wang, X H Song. Engineering intermediate-band photovoltaic material by heavily co-doping selenium and nitrogen in silicon. Appl Phys Express, 11, 011303(2018).

    [64] X Dong, Y Y Wang, X H Song et al. First-principles studies of a photovoltaic material based on silicon heavily codoped with sulfur and nitrogen. Appl Phys Express, 11, 031303(2018).

    [65] Y T Lin, N Mangan, S Marbach et al. Creating femtosecond-laser-hyperdoped silicon with a homogeneous doping profile. Appl Phys Lett, 106, 062105(2015).

    [66] B K Newman, E Ertekin, J T Sullivan et al. Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon. J Appl Phys, 114, 133507(2013).

    [67] Z X Jia, Q Wu, X R Jin et al. Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure. Opt Express, 28, 5239(2020).

    [68] L Y Du, Z M Wu, R Li et al. Near-infrared photoresponse of femtosecond-laser processed Se-doped silicon n+-n photodiodes. Opt Lett, 41, 5031(2016).

    [69] X Y Yu, J H Zhao, C H Li et al. Gold-hyperdoped black silicon with high IR absorption by femtosecond laser irradiation. IEEE Trans Nanotechnol, 16, 502(2017).

    [70] X D Qiu, X G Yu, S Yuan et al. Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping. Adv Opt Mater, 6, 1700638(2018).

    [71] R Batalov, R Bayazitov, I Faizrakhmanov et al. Photoelectric and magnetic properties of Fe-hyperdoped Si layers formed by the recoil-atom implantation. Mater Sci Semicond Process, 105, 104752(2020).

    [72] R Chen, B D Fan, M Pan et al. Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation. Mater Lett, 163, 90(2016).

    [73] A A Istratov, P Zhang, R J McDonald et al. Nickel solubility in intrinsic and doped silicon. J Appl Phys, 97, 023505(2005).

    [74] Q B Luan, Z Y Ni, S Koura et al. Low-resistivity bulk silicon prepared by hot-pressing boron- and phosphorus-hyperdoped silicon nanocrystals. AIP Adv, 4, 127108(2014).

    [75] J J Chen, P Rohani, S G Karakalos et al. Boron-hyperdoped silicon for the selective oxidative dehydrogenation of propane to propylene. Chem Commun, 56, 9882(2020).

    [76] O Moutanabbir, D Isheim, H Blumtritt et al. Colossal injection of catalyst atoms into silicon nanowires. Nature, 496, 78(2013).

    [77] Z P Zhou, B Yin, J Michel. On-chip light sources for silicon photonics. Light Sci Appl, 4, e358(2015).

    [78] A Polman. Erbium implanted thin film photonic materials. J Appl Phys, 82, 1(1997).

    [79] H M Wen, J J He, J Hong et al. Efficient Er/O-doped silicon light-emitting diodes at communication wavelength by deep cooling. Adv Opt Mater, 8, 2000720(2020).

    [80] E Bustarret, C Marcenat, P Achatz et al. Superconductivity in doped cubic silicon. Nature, 444, 465(2006).

    [81] L Boeri, J Kortus, O K Andersen. Three-dimensional MgB2-type superconductivity in hole-doped diamond. Phys Rev Lett, 93, 237002(2004).

    [82] E Ertekin, M T Winkler, D Recht et al. Insulator-to-metal transition in selenium-hyperdoped silicon: Observation and origin. Phys Rev Lett, 108, 026401(2012).

    [83] W J Yang, J Mathews, J S Williams. Hyperdoping of Si by ion implantation and pulsed laser melting. Mater Sci Semicond Process, 62, 103(2017).

    [84] J T Sullivan, C B Simmons, J J Krich et al. Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: A case study in sulfur-hyperdoped silicon. J Appl Phys, 114, 103701(2013).

    [85] M A Sheehy, B R Tull, C M Friend et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation. Mater Sci Eng B, 137, 289(2007).

    [86] D Recht, D Hutchinson, T Cruson et al. Contactless microwave measurements of photoconductivity in silicon hyperdoped with chalcogens. Appl Phys Express, 5, 041301(2012).

    [87] J J Krich, B I Halperin, A Aspuru-Guzik. Nonradiative lifetimes in intermediate band photovoltaics—Absence of lifetime recovery. J Appl Phys, 112, 013707(2012).

    [88] J T Sullivan, C B Simmons, T Buonassisi et al. Targeted search for effective intermediate band solar cell materials. IEEE J Photovolt, 5, 212(2015).

    [89] X Y Li, P D Han, L P Gao et al. Electronic properties investigation of silicon supersaturated with tellurium. Appl Phys A, 105, 1021(2011).

    [90] Y R Zhou, F Z Liu, X H Song. The insulator-to-metal transition of Co hyperdoped crystalline silicon. J Appl Phys, 113, 103702(2013).

    [91] E R Weber. Transition metals in silicon. Appl Phys A, 30, 1(1983).

    [92] X Dong, X X Fang, Y Y Wang et al. Modulating the band structure and sub-bandgap absorption of Co-hyperdoped silicon by co-doping with shallow-level elements. Appl Phys Express, 11, 061301(2018).

    [93] X Dong, X H Song, Y Y Wang et al. First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon. Appl Phys Express, 8, 081302(2015).

    [94] J Olea, A del Prado, D Pastor et al. Sub-bandgap absorption in Ti implanted Si over the Mott limit. J Appl Phys, 109, 113541(2011).

    [95] B R Tull, M T Winkler, E Mazur. The role of diffusion in broadband infrared absorption in chalcogen-doped silicon. Appl Phys A, 96, 327(2009).

    [96] B K Newman, M J Sher, E Mazur et al. Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon. Appl Phys Lett, 98, 251905(2011).

    [97] C Wen, W Chen, Y P Chen et al. Thermal annealing performance of sulfur-hyperdoped black silicon fabricated using a Nd: YAG nanosecond-pulsed laser. Mater Res Bull, 93, 238(2017).

    [98] K F Wang, P G Liu, S C Qu et al. Optical and electrical properties of textured sulfur-hyperdoped silicon: A thermal annealing study. J Mater Sci, 50, 3391(2015).

    [99] S Zhou, Z Y Ni, Y Ding et al. Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron. ACS Photonics, 3, 415(2016).

    [100] J W Slotboom, H C de Graaff. Measurements of bandgap narrowing in Si bipolar transistors. Solid State Electron, 19, 857(1976).

    [101] X D Pi, C Delerue. Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: A model for localized surface plasmon resonance. Phys Rev Lett, 111, 177402(2013).

    [102] Z Y Ni, X D Pi, S Zhou et al. Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals. Adv Opt Mater, 4, 700(2016).

    [103] P Rohani, S Banerjee, S Sharifi-Asl et al. Synthesis and properties of plasmonic boron-hyperdoped silicon nanoparticles. Adv Funct Mater, 29, 1807788(2019).

    [104] M C Beard, J M Luther, A J Nozik. The promise and challenge of nanostructured solar cells. Nat Nanotechnol, 9, 951(2014).

    [105] Y Cui, C M Lieber. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 291, 851(2001).

    [106] B Z Tian, X L Zheng, T J Kempa et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 449, 885(2007).

    [107] H Zhou, H Wang, L M Ding. Perovskite nanowire networks for photodetectors. J Semicond, 42, 110202(2021).

    [108] L Y Li, Y F Cheng, Z Y Liu et al. Study of structure-property relationship of semiconductor nanomaterials by off-axis electron holography. J Semicond, 43, 041103(2022).

    [109] Y Berencén, S Prucnal, W Möller et al. CMOS-compatible controlled hyperdoping of silicon nanowires. Adv Mater Interfaces, 5, 1800101(2018).

    [110] Y Ke, X J Weng, J M Redwing et al. Fabrication and electrical properties of si nanowires synthesized by Al catalyzed vapor-liquid-solid growth. Nano Lett, 9, 4494(2009).

    [111] C B Chang, C Y Tsai, K T Chen et al. Solution-grown phosphorus-hyperdoped silicon nanowires/carbon nanotube bilayer fabric as a high-performance lithium-ion battery anode. ACS Appl Energy Mater, 4, 3160(2021).

    [112] Y Tanaka, M Furata, H Mastuura et al. Development of high-sensitive gas-sensor for B2H6 using gas-permeable conductive DLC membrane. ECS Trans, 16, 387(2008).

    [113] D Narducci, L Zulian, B Lorenzi et al. Exceptional thermoelectric power factors in hyperdoped, fully dehydrogenated nanocrystalline silicon thin films. Appl Phys Lett, 119, 263903(2021).

    [114] R Yanagisawa, N Tsujii, T K Mori et al. Nanostructured planar-type uni-leg Si thermoelectric generators. Appl Phys Express, 13, 095001(2020).

    [115] R Kondrotas, C Chen, X X Liu et al. Low-dimensional materials for photovoltaic application. J Semicond, 42, 031701(2021).

    [116] Y Y Zhu, Q P Zhang, L Shu et al. Recent progress of efficient flexible solar cells based on nanostructures. J Semicond, 42, 101604(2021).

    [117] K Wang, X H Li, Y B Zhang et al. Study of titanium-doped silicon films prepared by magnetron sputtering and nanosecond pulsed laser. Acta Photonica Sinic, 47, 916005(2018).

    [118] S Hocine, D Mathiot. Titanium diffusion in silicon. Appl Phys Lett, 53, 1269(1988).

    [119] C Wen, Y J Yang, Y J Ma et al. Sulfur-hyperdoped silicon nanocrystalline layer prepared on polycrystalline silicon solar cell substrate by thin film deposition and nanosecond-pulsed laser irradiation. Appl Surf Sci, 476, 49(2019).

    [120] P Saring, A Lena Baumann, B Schlieper-Ludewig et al. Electronic and structural properties of femtosecond laser sulfur hyperdoped silicon pn-junctions. Appl Phys Lett, 103, 061904(2013).

    [121] I Umezu, J M Warrender, S Charnvanichborikarn et al. Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens. J Appl Phys, 113, 213501(2013).

    [122] T Zhang, W Ahmad, B H Liu et al. Broadband infrared response of sulfur hyperdoped silicon under femtosecond laser irradiation. Mater Lett, 196, 16(2017).

    [123] F Chiodi, A Grockowiak, J E Duvauchelle et al. Gas immersion laser doping for superconducting nanodevices. Appl Surf Sci, 302, 209(2014).

    [124] K Sardashti, T Nguyen, M Hatefipour et al. Tailoring superconducting phases observed in hyperdoped Si:Ga for cryogenic circuit applications. Appl Phys Lett, 118, 073102(2021).

    [125] X L Liu, Y Zhao, S X Ma et al. Rapid and wide-range detection of NOx gas by N-hyperdoped silicon with the assistance of a photovoltaic self-powered sensing mode. ACS Sens, 4, 3056(2019).

    [126] Z Zhu, H Z Shao, X Dong et al. Electronic band structure and sub-band-gap absorption of nitrogen hyperdoped silicon. Sci Rep, 5, 10513(2015).

    [127] X Dong, Y Y Wang, X H Song. Calculational Raman spectra investigation of nitrogen-hyperdoped silicon formed in different conditions. J Phys Condens Matter, 32, 115701(2020).

    [128] Z Y Zhao, P Z Yang. Insight into insulator-to-metal transition of sulfur-doped silicon by DFT calculations. Phys Chem Chem Phys, 16, 17499(2014).

    [129] X D Qiu, Z J Wang, X T Hou et al. Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon. Photonics Res, 7, 351(2019).

    [130] C H Li, X P Wang, J H Zhao et al. Black silicon IR photodiode supersaturated with nitrogen by femtosecond laser irradiation. IEEE Sens J, 18, 3595(2018).

    [131] K Wang, H G Yang, X Y Wang et al. 1064 nm photoresponse enhancement of femtosecond-laser-irradiated Si photodiodes by etching treatment. Appl Phys Express, 11, 062203(2018).

    [132] T Zhang, B H Liu, W Ahmad et al. Optical and electronic properties of femtosecond laser-induced sulfur-hyperdoped silicon N+/P photodiodes. Nanoscale Res Lett, 12, 522(2017).

    [133] Hemme E García, R Garcia-Hernansanz, J Olea et al. Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector. Appl Phys Lett, 104, 211105(2014).

    [134] M Wang, Y Berencén, E García-Hemme et al. Extended infrared photoresponse in Te-HyperdopedSi at room temperature. Phys Rev Appl, 10, 024054(2018).

    [135] M Wang, E García-Hemme, Y Berencén et al. Silicon-based intermediate-band infrared photodetector realized by Te hyperdoping. Adv Optical Mater, 9, 2101798(2021).

    [136] Sheehy M A. Femtosecond-laser microstructuring of silicon: Dopants and defects. Harvard University, 2004

    [137] S F Cagnina. Enhanced gold solubility effect in heavily n-type silicon. J Electrochem Soc, 116, 498(1969).

    [138] Hemme E García, R Garcia-Hernansanz, J Olea et al. Double ion implantation and pulsed laser melting processes for third generation solar cells. Int J Photoenergy, 2013, 1(2013).

    [139] S X Hu, P D Han, P Liang et al. Metallic conduction behavior in selenium-hyperdoped silicon. Mater Sci Semicond Process, 17, 134(2014).

    [140] T Gimpel, K M Guenther, S Kontermann et al. Study on contact materials for sulfur hyperdoped black silicon. 2011 37th IEEE Photovoltaic Specialists Conference, 2061(2011).

    [141] T Gimpel, S Winter, M Boßmeyer et al. Quantum efficiency of femtosecond-laser sulfur hyperdoped silicon solar cells after different annealing regimes. Sol Energy Mater Sol Cells, 180, 168(2018).

    [142] D Cammilleri, F Fossard, D Débarre et al. Highly doped Si and Ge formed by GILD (gas immersion laser doping); from GILD to superconducting silicon. Thin Solid Films, 517, 75(2008).

    [143] A Grockowiak, T Klein, H Cercellier et al. Thickness dependence of the superconducting critical temperature in heavily doped Si: B epilayers. Phys Rev B, 88, 064508(2013).

    [144] A Grockowiak, T Klein, E Bustarret et al. Superconducting properties of laser annealed implanted Si:B epilayers. Supercond Sci Technol, 26, 045009(2013).

    [145] X L Liu, S W Zhu, H B Sun et al. “Infinite sensitivity” of black silicon ammonia sensor achieved by optical and electric dual drives. ACS Appl Mater Interfaces, 10, 5061(2018).

    [146] Y Zhao, X L Liu, S X Ma et al. Light-optimized photovoltaic self-powered NO2 gas sensing based on black silicon. Sens Actuat B, 340, 129985(2021).

    [147] W J Wang, S X Ma, X L Liu et al. NO2 gas sensor with excellent performance based on thermally modified nitrogen-hyperdoped silicon. Sens Actuat B, 354, 131193(2022).

    Zhouyu Tong, Mingxuan Bu, Yiqiang Zhang, Deren Yang, Xiaodong Pi. Hyperdoped silicon: Processing, properties, and devices[J]. Journal of Semiconductors, 2022, 43(9): 093101
    Download Citation