• Laser & Optoelectronics Progress
  • Vol. 57, Issue 9, 090701 (2020)
Meng Chen, Jing Li, Ruohu Zhang, Guohua Hu, and Binfeng Yun*
Author Affiliations
  • Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
  • show less
    DOI: 10.3788/LOP57.090701 Cite this Article Set citation alerts
    Meng Chen, Jing Li, Ruohu Zhang, Guohua Hu, Binfeng Yun. Fractional-Order Differentiator Using Silicon-Based Cascaded Dual Micro-Rings[J]. Laser & Optoelectronics Progress, 2020, 57(9): 090701 Copy Citation Text show less
    References

    [1] Wu Y Y, Zhang X P, Shan X Y et al. An ultrafast all-optical switch with silicon-based silica structure[J]. Laser & Optoelectronics Progress, 55, 041303(2018).

    [2] Guo Y, Li P, Guo Y Q et al. Real-time and high-speed all-optical quantization by slicing supercontinuum spectrum[J]. Laser & Optoelectronics Progress, 55, 100701(2018).

    [3] Bi X J, Wang H. Person re-identification based on view information embedding[J]. Acta Optica Sinica, 39, 0615007(2019).

    [4] Li F X, Park Y, Azaña J. Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD)[J]. Optics Letters, 32, 3364-3366(2007).

    [6] Asghari M H, Azaña J. Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators[J]. Optics Communications, 281, 4581-4588(2008).

    [7] Slavík R, Park Y, Kulishov M et al. Ultrafast all-optical differentiators[J]. Optics Express, 14, 10699-10707(2006).

    [8] Ngo N Q, Yu S F, Tjin S C et al. A new theoretical basis of higher-derivative optical differentiators[J]. Optics Communications, 230, 115-129(2004).

    [9] Pu Y F, Zhou J L, Yuan X. Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement[J]. IEEE Transactions on Image Processing, 19, 491-511(2010).

    [10] Ren Z M, He C J, Zhang Q F. Fractional order total variation regularization for image super-resolution[J]. Signal Processing, 93, 2408-2421(2013).

    [11] Charef A, Idiou D. Design of analog variable fractional order differentiator and integrator[J]. Nonlinear Dynamics, 69, 1577-1588(2012).

    [12] Cai S S, Zheng L F, Zeng B X et al. Quantitative phase imaging based on transport-of-intensity equation and differential interference contrast microscope and its application in breast cancer diagnosis[J]. Chinese Journal of Lasers, 45, 0307015(2018).

    [13] Zhang W F, Li W Z, Yao J P. Optical differentiator based on an integrated sidewall phase-shifted Bragg grating[J]. IEEE Photonics Technology Letters, 26, 2383-2386(2014).

    [14] Dong J J, Zheng A L, Gao D S et al. Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers[J]. Optics Express, 21, 7014-7024(2013).

    [15] Park Y, Azaña J, Slavík R. Ultrafast all-optical first- and higher-order differentiators based on interferometers[J]. Optics Letters, 32, 710-712(2007).

    [16] Yao J P. A photonic integrated signal processor[J]. Proceedings of SPIE, 10106, 101060K(2017).

    [17] Liu W L, Zhang W F, Yao J P. Silicon-based integrated tunable fractional order photonic temporal differentiators[J]. Journal of Lightwave Technology, 35, 2487-2493(2017).

    [18] Huang T L, Zheng A L, Dong J J et al. Terahertz-bandwidth photonic temporal differentiator based on a silicon-on-isolator directional coupler[J]. Optics Letters, 40, 5614-5617(2015).

    [19] Liu F F, Wang T, Qiang L et al. Compact optical temporal differentiator based on silicon microring resonator[J]. Optics Express, 16, 15880-15886(2008).

    [20] Hu Y T, Zhang L, Xiao X et al. An ultra-high-speed photonic temporal differentiator using cascaded SOI microring resonators[J]. Journal of Optics, 14, 065501(2012).

    [21] Zhou G, Li Q, Wang T et al. All-optical temporal differentiation of ultra-high-speed picosecond pulses based on compact silicon microring resonator[J]. Electronics Letters, 47, 814-816(2011).

    [22] Dong J J, Zheng A L, Gao D S et al. High-order photonic differentiator employing on-chip cascaded microring resonators[J]. Optics Letters, 38, 628-630(2013).

    [23] Shahoei H, Xu D X, Schmid J H et al. Photonic fractional-order differentiator using an SOI microring resonator with an MMI coupler[J]. IEEE Photonics Technology Letters, 25, 1408-1411(2013).

    [24] Zheng A L, Dong J J, Zhou L J et al. Fractional-order photonic differentiator using an on-chip microring resonator[J]. Optics Letters, 39, 6355-6358(2014).

    [25] Liu M, Zhao Y H, Wang X et al. Widely tunable fractional-order photonic differentiator using a Mach-Zenhder interferometer coupled microring resonator[J]. Optics Express, 25, 33305-33314(2017).

    [26] Jin B Y, Yuan J H, Yu C X et al. Tunable fractional-order photonic differentiator based on the inverse Raman scattering in a silicon microring resonator[J]. Optics Express, 23, 11141-11151(2015).

    [27] Jin B Y, Yuan J H, Wang K R et al. A comprehensive theoretical model for on-chip microring-based photonic fractional differentiators[J]. Scientific Reports, 5, 14216-14225(2015).

    [28] Yang T, Liao S S, Liu L et al. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Frontiers of Optoelectronics, 9, 399-405(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1611230003306B9EaH

    [29] Heebner J E, Wong V, Schweinsberg A et al. Optical transmission characteristics of fiber ring resonators[J]. IEEE Journal of Quantum Electronics, 40, 726-730(2004).

    [30] Dong J J, Yu Y, Zhang Y et al. Arbitrary-order bandwidth-tunable temporal differentiator using a programmable optical pulse shaper[J]. IEEE Photonics Journal, 3, 996-1003(2011).

    [31] Yan S Q, Zhang Y, Dong J J et al. Operation bandwidth optimization of photonic differentiators[J]. Optics Express, 23, 18925-18936(2015).

    Meng Chen, Jing Li, Ruohu Zhang, Guohua Hu, Binfeng Yun. Fractional-Order Differentiator Using Silicon-Based Cascaded Dual Micro-Rings[J]. Laser & Optoelectronics Progress, 2020, 57(9): 090701
    Download Citation