• Acta Optica Sinica
  • Vol. 38, Issue 2, 0213001 (2018)
Liqiang Zhou*, Jie Zhang, Jian Ding, and Weiwei Chen
Author Affiliations
  • Faculty of Information Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
  • show less
    DOI: 10.3788/AOS201838.0213001 Cite this Article Set citation alerts
    Liqiang Zhou, Jie Zhang, Jian Ding, Weiwei Chen. Design of Graphene-Based Plasmonic XNOR/XOR Logic Gates[J]. Acta Optica Sinica, 2018, 38(2): 0213001 Copy Citation Text show less
    References

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [2] Wang F, Zhang Y, Tian C et al. Gate-variable optical transitions in graphene[J]. Science, 320, 206-209(2008). http://www.jstor.org/stable/20054982

    [3] Gan C H, Chu H S, Li E P. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies[J]. Physical Review B, 85, 125431(2012). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000025000015000076000001&idtype=cvips&gifs=Yes

    [4] Jablan M, Buljan H. Solja cˇi c' M. Plasmonics in graphene at infrared frequencies [J]. Physical Review B, 80, 245435(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000021000002000009000001&idtype=cvips&gifs=Yes

    [5] Lu W B, Zhu W, Xu H J et al. Flexible transformation plasmonics using graphene[J]. Optics Express, 21, 10475-10482(2013). http://www.opticsinfobase.org/abstract.cfm?URI=oe-21-9-10475

    [6] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 6, 749-758(2012).

    [7] Yan H, Low T, Zhu W et al. Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. Nature Photonics, 7, 394-399(2013). http://www.nature.com/nphoton/journal/v7/n5/abs/nphoton.2013.57.html

    [8] Woessner A, Lundeberg M B, Gao Y et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nature Materials, 14, 421-425(2015). http://europepmc.org/abstract/MED/25532073

    [9] Li Y, Zhang H F, Fan T X et al. Theoretical analysis of double dielectric loaded graphene surface plasmon polariton[J]. Acta Optica Sinica, 36, 0724001(2016).

    [10] Bahadori-Haghighi S, Ghayour R, Sheikhi M H. Three-dimensional analysis of an ultrashort optical cross-bar switch based on a graphene plasmonic coupler[J]. Journal of Lightwave Technology, 35, 2211-2217(2017). http://8.18.37.105/abstract.cfm?uri=jlt-35-11-2211

    [11] Menendez G A, Maes B. Frequency comb generation using plasmonic resonances in a time-dependent graphene ribbon array[J]. Physical Review B, 95, 144307(2017). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.144307

    [12] Kim M, Kang P, Leem J et al. A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity[J]. Nanoscale, 9, 4058-4065(2017). http://www.ncbi.nlm.nih.gov/pubmed/28116377/

    [13] Ooi K J A, Chu H S, Bai P et al. . Electro-optical graphene plasmonic logic gates[J]. Optics Letters, 39, 1629-1632(2014). http://europepmc.org/abstract/MED/24690855

    [14] Yarahmadi M. Moravvej-Farshi M K, Yousefi L. Subwavelength graphene-based plasmonic THz switches and logic gates[J]. IEEE Transactions on Terahertz Science and Technology, 5, 725-731(2015).

    [15] Tian Y, Zhao Y, Chen W et al. Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators[J]. Optics Express, 23, 26342-26355(2015). http://www.ncbi.nlm.nih.gov/pubmed/26480148

    [16] Tian Y, Zhang L, Ji R et al. Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators[J]. Optics Letters, 36, 1650-1652(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-9-1650

    [17] Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 103, 064302(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4946711

    [18] He S, Zhang X, He Y. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI[J]. Optics Express, 21, 30664-30673(2013). http://www.ncbi.nlm.nih.gov/pubmed/24514642

    [19] Hu J, Lu W, Wang J. Highly confined and tunable plasmonic waveguide ring resonator based on graphene nanoribbons[J]. Europhysics Letters, 106, 48002(2014). http://adsabs.harvard.edu/abs/2014EL....10648002H

    [20] Mikhailov S A, Ziegler K. New electromagnetic mode in graphene[J]. Physical Review Letters, 99, 016803(2007). http://www.ncbi.nlm.nih.gov/pubmed/17678180

    [21] Hwang E H, Sarma S D. Dielectric function, screening, and plasmons in two-dimensional graphene[J]. Physical Review B, 75, 205418(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000075000020205418000001&idtype=cvips&gifs=Yes

    [22] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 332, 1291-1294(2011).

    Liqiang Zhou, Jie Zhang, Jian Ding, Weiwei Chen. Design of Graphene-Based Plasmonic XNOR/XOR Logic Gates[J]. Acta Optica Sinica, 2018, 38(2): 0213001
    Download Citation