• Microelectronics
  • Vol. 52, Issue 1, 132 (2022)
CHEN Fei, FENG Quanyuan, YANG Hongjin, and WEN Yan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.210279 Cite this Article
    CHEN Fei, FENG Quanyuan, YANG Hongjin, WEN Yan. An Enhancement-Mode AlGaN/GaN HEMT with Double Heterojunction Under Gate[J]. Microelectronics, 2022, 52(1): 132 Copy Citation Text show less
    References

    [1] ASIF K M, BHATTARAI A, KUZNIA J N, et al. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction [J]. Appl Phys Lett, 1993, 63(9): 1214-1215.

    [2] LEE F, SU L Y, WANG C H, et al. Impact of gate metal on the performance of p-GaN/AlGaN/GaN high electron mobility transistors [J]. IEEE Elec Dev Lett, 2015, 36(3): 232-234.

    [3] UEMOTO Y, HIKITA M, UENO H, et al. A normally off AlGaN/GaN transistor with RonA=2.6 mΩ·cm2 and BVds=640 V using conductivity modulation [C] // IEEE Int Elec Dev Meet. San Francisco, CA, USA. 2006.

    [4] RAJ A D, SANJOY D, KUMAR R S, et al. T-gate AlGaN/GaN HEMT with effective recess engineering for enhancement mode operation [J]. Mate Today: Proceed, 2021, 45(2): 3556-3559.

    [5] HE Y, GAO H, WANG C, et al. Comparative study between partially and fully recessed-gate enhancement-mode AlGaN/GaN MIS HEMT on the breakdown mechanism [J]. Physica Status Solidi, 2019, 216(16): 1900115.1-1900115.6.

    [6] KHAN M A, CHEN Q, SUN C J, et al. Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors [J]. Appl Phys Lett, 1996, 68(4): 514-516.

    [7] YONG C, ZHOU Y, CHEN K J, et al. High performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment [J]. IEEE Elec Dev Lett, 2005, 26(7): 435-437.

    [8] ZHANG Z, FU K, DENG X, et al. Normally off AlGaN/GaN MIS-high-electron mobility transistors fabricated by using low pressure chemical vapor deposition Si3N4 gate dielectric and standard fluorine ion implantation [J]. IEEE Elec Dev Lett, 2015, 36(11): 1128-1131.

    [9] HUANG X, LIU Z, LI Q, et al. Evaluation and application of 600 V GaN HEMT in cascode structure [J]. IEEE Trans Power Elec, 2014, 29(5): 2453-2461.

    [10] HEIKMAN S, KELLER S, WU Y, et al. Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures [J]. J Appl Phys, 2003, 93(12): 10114-10118.

    [11] AHMEDA K, UBOCHI B, ALQAYSI M, et al. The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation [J]. Microelec Reliab, 2020, 115: 1-8.

    [13] GASKA R, SHUR M S, FJELDLY T A, et al. Two-channel AlGaN/GaN heterostructure field effect transistor for high power applications [J]. J Appl Phys, 1999, 85(5): 3009-3011.

    [14] HAHN H, FUNCK C, GEIPEL S, et al. The III-nitride double heterostructure revisited: benefits for threshold voltage engineering of MIS devices [J]. IEEE Trans Elec Dev, 2016, 63(2): 606-613.

    [15] BAKEROOT B, STOCKMAN A, POSTHUMA N, et al. Analytical model for the threshold voltage of p-(Al)GaN high-electron-mobility transistors [J]. IEEE Trans Elec Dev, 2017, 65(1): 79-86.

    [16] SGHAIER N, TRABELSI M, YACOUBI N, et al. Traps centers and deep defects contribution in current instabilities for AlGaN/GaN HEMT’s on silicon and sapphire substrates [J]. Microelec J, 2006, 37(4): 363-370.

    [17] ZAGNI N, CHINI A, PUGLISI F M, et al. The role of carbon doping on breakdown, current collapse, and dynamic on-resistance recovery in AlGaN/ GaN high electron mobility transistors on semi-insulating SiC substrates [J]. Physica Status Solidi, 2020, 217(7): 1900762.1-1900762.5.

    [18] JEBALIN B K, REKH A S, PRAJOON P, et al. The influence of high-k passivation layer on breakdown voltage of Schottky AlGaN/GaN HEMTs [J]. Microelec J, 2015, 46(12): 1387-1391.

    [19] CHIU H C, CHANG Y S, LI B H, et al. High-performance normally-off p-GaN Gate HEMT with composite AlN/Al0.17Ga0.83N/Al0.3Ga0.7N barrier layers design [J]. IEEE J Elec Dev Soc, 2018, 6: 201-206.

    CHEN Fei, FENG Quanyuan, YANG Hongjin, WEN Yan. An Enhancement-Mode AlGaN/GaN HEMT with Double Heterojunction Under Gate[J]. Microelectronics, 2022, 52(1): 132
    Download Citation