• Acta Optica Sinica
  • Vol. 41, Issue 1, 0116002 (2021)
Jinmin Li1,2,3,*, Zhiqiang Liu1,2,3, Tongbo Wei1,2,3, Jianchang Yan1,2,3..., Xiaoyan Yi1,2,3 and Junxi Wang1,2,3|Show fewer author(s)
Author Affiliations
  • 1Research and Development Center for Semiconductor Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
  • show less
    DOI: 10.3788/AOS202141.0116002 Cite this Article Set citation alerts
    Jinmin Li, Zhiqiang Liu, Tongbo Wei, Jianchang Yan, Xiaoyan Yi, Junxi Wang. Development Summary of Semiconductor Lighting in China[J]. Acta Optica Sinica, 2021, 41(1): 0116002 Copy Citation Text show less
    References

    [1] Pankove J I, Miller E A, Berkeyheiser J E. Electroluminescence in GaN[M]. ∥Luminescence of crystals, molecules, and solutions. Boston, MA: Springer, 426-430(1973).

    [2] Nakamura S J, Sench M, Iwasa N et al. High brightness InGaNblue, green and yellow light-emitting diodes with quantum well structures[J]. Japanese Journal of Applied Physics, 34, L797-L799(1995).

    [3] Amano H, Sawaki N, Akasaki I et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Applied Physics Letters, 48, 353-355(1986). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4854998

    [4] Amano H, Kito M, Hiramatsu K et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)[J]. Japanese Journal of Applied Physics, 28, L2112-L2114(1989).

    [5] Nakamura S. In situ monitoring of GaN growth using interference effects[J]. Japanese Journal of Applied Physics, 30, 1620-1627(1991). http://ci.nii.ac.jp/naid/110003902582/en

    [6] Nakamura S. GaN growth using GaN buffer layer[J]. Japanese Journal of Applied Physics, 30, L1705-L1707(1991).

    [7] Nakamura S, Mukai T, Senoh M et al. Thermal annealing effects on P-type Mg-doped GaN films[J]. Japanese Journal of Applied Physics, 31, L139-L142(1992).

    [8] Nakamura S, Iwasa N, Senoh M et al. Hole compensation mechanism of p-type GaN films[J]. Japanese Journal of Applied Physics, 31, 1258-1266(1992).

    [9] Nakamura S, Mukai T. High-quality InGaN films grown on GaN films[J]. Japanese Journal of Applied Physics, 31, L1457-L1459(1992).

    [10] Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J]. Applied Physics Letters, 64, 1687-1689(1994). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=4266605&site=ehost-live

    [11] Nakamura S, Senoh M, Nagahama S I et al. InGaN-based multi-quantum-well-structure laser diodes[J]. Japanese Journal of Applied Physics, 35, L74-L76(1996).

    [12] Cho J, Park J H, Kim J K et al. White light-emitting diodes: history, progress, and future[J]. Laser & Photonics Reviews, 11, 1600147(2017). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201600147/abstract

    [13] Narukawa Y. White-light LEDS[J]. Optics and Photonics News, 15, 24-29(2004).

    [14] Narukawa Y, Narita J, Sakamoto T et al. Ultra-high efficiency white light emitting diodes[J]. Japanese Journal of Applied Physics, 45, L1084-L1086(2006).

    [15] Vennéguès P, Beaumont B, Bousquet V et al. Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods[J]. Journal of Applied Physics, 87, 4175-4181(2000). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.373048

    [16] Kawaguchi Y, Sugahara G, Mochida A et al. Low-dislocation density AlGaN layer by air-bridged lateral epitaxial growth[J]. Physica Status Solidi (c), 0, 2107-2110(2003).

    [17] Xiao M, Zhang J, Duan X et al. A partly-contacted epitaxial lateral overgrowth method applied to GaN material[J]. Scientific Reports, 6, 23842(2016). http://www.nature.com/articles/srep23842

    [18] Okamoto K, Niki I, Shvartser A et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells[J]. Nature Materials, 3, 601-605(2004).

    [19] Kwon M K, Kim J Y, Kim B H et al. Surface-plasmon-enhanced light-emitting diodes[J]. Advanced Materials, 20, 1253-1257(2008). http://dx.doi.org/10.1002/adma.200701130

    [20] Yao Y C, Hwang J M, Yang Z P et al. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons[J]. Scientific Reports, 6, 22659(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4776147/

    [21] Pattison M, Hansen M, Bardsley N et al. lighting R&D opportunities[EB/OL][2020-08-10]. 2020-01-15) https: ∥www.energy.gov/sites/prod/files/2020/01/f70/ssl-rd-opportunities2-jan2020.pdf.(2019).

    [22] Akasaki I, Amano H, Hiramatsu K et al. High efficiency blue LED utilizing GaN film with AIN buffer layer by MOVPE. [C]∥Gallium arsenide and related compounds 1987, September 28--October 1, 1987, Heraklion, Crete.[S.l.: s.n. ](1987).

    [23] Amano H, Akasaki I. GaN blue and ultraviolet light emitting devices[J]. Solid State Physics, 25, 399-405(1990). http://www.mendeley.com/research/gan-blue-ultraviolet-light-emitting-devices/

    [24] Kneissl M, Rass J. III-nitride ultraviolet emitters[M]. Cham: Springer(2016).

    [25] Jin J, Cuong T V, Han M et al. Significant reduction of AlN wafer bowing grown on sapphire substrate with patterned graphene oxide[J]. Materials Letters, 160, 496-499(2015).

    [26] Qi L, Xu Y, Li Z Y et al. Stress analysis of transferable crack-free gallium nitride microrods grown on graphene/SiC substrate[J]. Materials Letters, 185, 315-318(2016).

    [27] Chung K, Lee C H, Yi G C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices[J]. Science, 330, 655-657(2010).

    [28] Choi J K, Huh J H, Kim S D et al. One-step graphene coating of heteroepitaxial GaN films[J]. Nanotechnology, 23, 435603(2012). http://europepmc.org/abstract/MED/23059535

    [29] Kim J, Lee M, Shim H J et al. Stretchable silicon nanoribbon electronics for skin prosthesis[J]. Nature Communications, 5, 5747(2014). http://www.nature.com/articles/ncomms6747/

    [30] Al Balushi Z Y, Miyagi T, Lin Y C et al. The impact of graphene properties on GaN and AlN nucleation[J]. Surface Science, 634, 81-88(2015).

    [31] Chae S J, Kim Y H, Seo T H et al. Direct growth of etch pit-free GaN crystals on few-layer graphene[J]. RSC Advances, 5, 1343-1349(2015).

    [32] Qi Y, Wang Y, Pang Z et al. Fast growth of strain-free AlN on graphene-buffered sapphire[J]. Journal of the American Chemical Society, 140, 11935-11941(2018).

    [33] Chang H L, Chen Z L, Li W J et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate[J]. Applied Physics Letters, 114, 091107(2019). http://www.researchgate.net/publication/331568519_Graphene-assisted_quasi-van_der_Waals_epitaxy_of_AlN_film_for_ultraviolet_light_emitting_diodes_on_nano-patterned_sapphire_substrate

    [34] Chen Z L, Liu Z Q, Wei T B et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene[J]. Advanced Materials, 31, 1807345(2019). http://onlinelibrary.wiley.com/doi/10.1002/adma.201807345