• Photonics Research
  • Vol. 6, Issue 5, 427 (2018)
Eesa Rahimi1、2 and Kürşat Şendur1、*
Author Affiliations
  • 1Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
  • 2e-mail: eesa@sabanciuniv.edu
  • show less
    DOI: 10.1364/PRJ.6.000427 Cite this Article Set citation alerts
    Eesa Rahimi, Kürşat Şendur. Chimera states in plasmonic nanoresonators[J]. Photonics Research, 2018, 6(5): 427 Copy Citation Text show less
    References

    [1] Y. Kuramoto, D. Battogtokh. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators(2002).

    [2] O. E. Omel’chenko. Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators. Nonlinearity, 26, 2469-2498(2013).

    [3] D. M. Abrams, S. H. Strogatz. Chimera states for coupled oscillators. Phys. Rev Lett., 93, 174102(2004).

    [4] N. Verschueren, U. Bortolozzo, M. G. Clerc, S. Residori. Spatiotemporal chaotic localized state in liquid crystal light valve experiments with optical feedback. Phys. Rev. Lett., 110, 104101(2013).

    [5] G. C. Sethia, A. Sen, F. M. Atay. Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett., 100, 144102(2008).

    [6] E. Omel’chenko, Y. L. Maistrenko, P. A. Tass. Chimera states: the natural link between coherence and incoherence. Phys. Rev. Lett., 100, 044105(2008).

    [7] I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll. Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett., 106, 234102(2011).

    [8] S. Nkomo, M. R. Tinsley, K. Showalter. Chimera states in populations of nonlocally coupled chemical oscillators. Phys. Rev. Lett., 110, 244102(2013).

    [9] M. Wolfrum, E. Omel’chenko. Chimera states are chaotic transients. Phys. Rev. E, 84, 015201(2011).

    [10] A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll. Experimental observation of chimeras in coupled-map lattices. Nat. Phys., 8, 658-661(2012).

    [11] M. R. Tinsley, S. Nkomo, K. Showalter. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys., 8, 662-665(2012).

    [12] L. Larger, B. Penkovsky, Y. Maistrenko. Virtual chimera states for delayed-feedback systems. Phys. Rev. Lett., 111, 054103(2013).

    [13] E. A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek. Chimera states in mechanical oscillator networks. Proc. Natl Acad. Sci. U.S.A., 110, 10563-10567(2013).

    [14] J. Wojewoda, K. Czolczynski, Y. Maistrenko, T. Kapitaniak. The smallest chimera state for coupled pendula. Sci. Rep., 6, 34329(2016).

    [15] L. Larger, B. Penkovsky, Y. Maistrenko. Laser chimeras as a paradigm for multistable patterns in complex systems. Nat. Commun., 6, 7752(2015).

    [16] J. Shena, J. Hizanidis, V. Kovanis, G. P. Tsironis. Turbulent chimeras in large semiconductor laser arrays. Sci. Rep., 7, 42116(2017).

    [17] M. G. Clerc, M. A. Ferré, S. Coulibaly, R. G. Rojas, M. Tlidi. Chimera-like states in an array of coupled-waveguide resonators. Opt. Lett., 42, 2906-2909(2017).

    [18] E. Tognoli, J. S. Kelso. The metastable brain. Neuron, 81, 35-48(2014).

    [19] D. M. Abrams, R. Mirollo, S. H. Strogatz, D. A. Wiley. Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett., 101, 084103(2008).

    [20] M. J. Panaggio, D. M. Abrams. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity, 28, R67-R87(2015).

    [21] D. J. Bergman, M. I. Stockman. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett., 90, 027402(2003).

    [22] N. I. Zheludev, S. Prosvirnin, N. Papasimakis, V. Fedotov. Lasing spaser. Nat. Photonics, 2, 351-354(2008).

    [23] M. I. Stockman. Spasers explained. Nat. Photonics, 2, 327-329(2008).

    [24] C. M. Soukoulis, S. Linden, M. Wegener. Negative refractive index at optical wavelengths. Science, 315, 47-49(2007).

    [25] E. Plum, V. Fedotov, P. Kuo, D. Tsai, N. Zheludev. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt. Express, 17, 8548-8551(2009).

    [26] S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev. Loss-free and active optical negative-index metamaterials. Nature, 466, 735-738(2010).

    [27] F. Reif. Fundamentals of Statistical and Thermal Physics(2009).

    [28] S.-H. Chang, A. Taflove. Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. Opt. Express, 12, 3827-3833(2004).

    [29] . FDTD Solutions(2016).

    [30] P. Nordlander, C. Oubre, E. Prodan, K. Li, M. Stockman. Plasmon hybridization in nanoparticle dimers. Nano Lett., 4, 899-903(2004).

    [31] B. Willingham, D. Brandl, P. Nordlander. Plasmon hybridization in nanorod dimers. Appl. Phys. B, 93, 209-216(2008).

    [32] M. G. Blaber, M. D. Arnold, M. J. Ford. Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver. J. Phys. Chem. C, 113, 3041-3045(2009).

    [33] E. D. Palik. Handbook of Optical Constants of Solids, 3(1998).

    [34] G. C. Sethia, A. Sen. Chimera states: the existence criteria revisited. Phys. Rev. Lett., 112, 144101(2014).

    [35] P. K. Jain, S. Eustis, M. A. El-Sayed. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B, 110, 18243-18253(2006).

    Eesa Rahimi, Kürşat Şendur. Chimera states in plasmonic nanoresonators[J]. Photonics Research, 2018, 6(5): 427
    Download Citation