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The chimera state is the concurrent combination of synchronous and incoherent oscillations in a set of identical
oscillators. In this study, we demonstrate the states for optical nanoresonators where the oscillators are designed
based on a plasmonic dimer cavity. This resonator interchanges radiative energy with an active medium located at
its hotspot, and therefore forms an amplitude-mediated oscillating system. Finite-difference time-domain
(FDTD)-based numerical analysis of a circular array of the coupled oscillators reveals that regardless of identical
nature, oscillator phase is not concordant over time for all members. The effect of coupling strength on the phase
escape/synchronization of the oscillators is investigated for the plasmonic nanoresonator system. It is shown that
for identical oscillators, which are placed symmetrically over the perimeter of a disc, the array can be divided to
several subgroups of concurrent coherent and incoherent members. While the oscillator of each subgroup seems
to be locked together, one member can escape from synchronization for a while and return to coherency, or it can
sync with the other groups. The effect of coupling strength and number of oscillators on the phase-escape pace is
studied for this system, and strong coupling is shown to force the array members to fully synchronize while weaker
coupling causes chimera states in the array. © 2018 Chinese Laser Press

OCIS codes: (140.1540) Chaos; (140.4780) Optical resonators; (160.4330) Nonlinear optical materials; (240.6680) Surface

plasmons; (270.3430) Laser theory.
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1. INTRODUCTION

Identical coupled oscillators were previously expected to either
synchronize in phase or drift indefinitely and incoherently;
however, it has been shown that this conventional wisdom
is not accurate enough where the coupling is nonlocal, i.e.,
the coupling strength decays with distance between the oscil-
lators [1]. Kuramoto demonstrated that even for identical os-
cillators which are similarly coupled, long-last coexistence of
synchronous and incoherent oscillations is possible. It was later
shown that the coexistence can be stable when the number of
oscillators tends to infinity [2]. Nowadays, these symmetry-
broken spatiotemporal oscillation patterns are known as chi-
mera states due to their similarity to mythological Greek drag-
ons with incongruous heads [3]. Chimeras are different from
other localized complex states, which are the combination of
uniform states and chaos [4].

These states were shown to exist for various coupling mech-
anisms both in pure mathematical systems [5–8] and physical
frameworks [9–12]. Recently, the numerical demonstration was
extended by designing appropriate experiments to show the
chimeras in mechanical systems with finite numbers of oscil-
lators [13,14]. In the optical regime, chimeras happen among

semiconductor laser oscillators [15,16] and coupled waveguide
resonators in photonic crystals [17]. Even though they were
recently revealed, researchers have found fascinating applica-
tions for these states ranging from brain electrical activity
modeling [18] to electrical power grid analysis [19]. This
applications spectrum is going to be extended as the states
are proven to exist in new physical systems [20].

Concurrently, surface plasmons have recently paved the way
for amplification of stimulated emission in nano-scale optics
[21]. Spasers, as tiny siblings of lasers, generate or amplify
coherent localized optical fields in a surface plasmon cavity
[22,23]. Although the ultrafast behavior of isolated spasers is
studied in the literature, their performance in arrays is not well
studied. Therefore, the social behavior of nano-optical oscilla-
tors is worth attention particularly because of their applications
in periodic structures of lossy metamaterials [24–26].

Here we demonstrate chimera states for arrays of nano-
optical oscillators, which are devised based on a spaser scheme.
Each oscillator consists of a plasmonic dimer cavity that
exchanges optical energy with an active material located at the
dimer hotspot. The cavity is modified so that the surface
plasmon traps ultra-short and intense optical pulses in the
active medium for long-last amplitude-mediated oscillation.
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The dimers are locally coupled by their near-field region neigh-
bors, and the coupling strength decreases by distance. It is
shown that for a small number of identical oscillator systems,
which are placed symmetrically over the perimeter of a circle,
concurrent coherent and incoherent behavior is observed
among the array members. While the oscillator of each group
seems to be locked together, one member can escape synchro-
nization for a while and return to coherency again, or it can
orchestrate with the other groups. The effect of coupling
strength on the phase-escape profile is studied for this system
using finite-difference time-domain (FDTD) numerical analysis.
Strong coupling can force the array members to fully synchronize
while weaker coupling demonstrates chimera states in the array
of oscillators. These states are insensitive to the variation of
angle of excitation, but the number of oscillators can affect the
period of phase escape among the majority of oscillators.

2. METHOD

To have an optical oscillator, an active medium is required.
Here, this functionality is provided by a material with a
four-level two-electron atomic system. Each two interacting
electrons in the active molecule occupy quantized energy levels;
the electrons can absorb/radiate emission with certain frequen-
cies and move between these energy levels. A simplified model
of such an active medium is shown in Fig. 1.

Electron transitions between energy levels E3 and E2 take
place at a quite fast pace, and the accompanying emissions have
random phases. As a result, the average radiation of electron
transition between these two energy levels becomes zero as the
number of transitions increases. Electron transitions between
E1 and E0 have a similar treatment. However, E0 − E3 and
E2 − E1 transitions are relatively slower and the resulting emis-
sions can be coherent to an imposed electromagnetic wave.

Before any excitation, the valence electrons of the active
atoms or molecules occupy two lower energy levels, E0 and
E1. Since two valence electrons of each active molecule cannot
occupy the same energy levels, the population of these levels is
almost equal before the excitation. On the other hand, due to
small probability of electron transition to higher energy levels
[27], there is a small population of electrons at E2 and E3.
Applying an electric field with appropriate frequency and

polarization pumps the electrons of E0∕E1 to E3∕E2; the elec-
trons store the energy while they are at E3 and E2.

The electron interaction with the electric field obeys the
Bloch relation, which results in the following governing equa-
tion for the polarization density in the medium [28]:

d2P21∕dt2 � γ21dP21∕dt � ω2
21P21 � ζ21�N 2 − N 1�E; (1)

d2P30∕dt2 � γ30dP30∕dt � ω2
30P30 � ζ30�N 3 − N 0�E: (2)

Here, Pij is the polarization density between level i and level
j; γij, ωij, and ζij are the corresponding deshaping factor, an-
gular frequency, and electron density adjustment factor; Nk is
the electron population density at energy level k; and E is the
electric field.

The electron population density at each level changes over
time due to non-radiative decays and radiative emissions. The
population density is governed by the Pauli exclusion principle
and the following coupled electron density rate equations:

dN 3∕dt � −N 3�1 − N 2�∕τ32 − N 3�1 − N 0�∕τ30
� dP30∕dt · E∕hω30; (3)

dN 2∕dt � N 3�1 − N 2�∕τ32 − N 2�1 − N 1�∕τ21
� dP21∕dt · E∕hω21; (4)

dN 1∕dt � N 2�1 − N 1�∕τ21 − N 1�1 − N 0�∕τ10
− dP21∕dt · E∕hω21; (5)

dN 0∕dt � N 3�1 − N 0�∕τ30 � N 1�1 − N 0�∕τ10
− dP30∕dt · E∕hω30: (6)

In this set of equations, τij is the electron average decay time
between levels i and j; h is Planck’s constant. These equations,
alongside the Maxwell equations, are discretized by the FDTD
method to analyze the electromagnetic problem of the active
medium in the time domain [29]. The FDTD code is modified
to model dispersive media by converting the optical index
in frequency domain to a summation of complex-conjugate
pole–residue pairs.

3. OSCILLATOR DESIGN

Here, an optical nano-oscillator is devised based on a nonlinear
active material which receives feedback from a plasmonic res-
onator. A plasmonic dimer provides a cavity with a high quality
factor at the gap, assuming the gap is filled by the active
material described in Section 2. The dimer helps the electric
field energy with specific frequency and polarization to be
stored in the active medium. However, the main functionality
of the nano-plasmonic dimer is to capture the released energy of
the active medium for a longer time in the resonator in order to
assess long-last oscillations with smooth amplitude.

The dimer, which is shown in Fig. 2(a), consists of two iden-
tical metallic cylinders placed coaxially with a small gap in
between filled by a semiconductor with active characteristics.
An external electric field with a polarization parallel to the

Fig. 1. Simplified model of electron interaction with photons in an
active medium with a two-electron, four-energy-level atomic system.
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dimer axis excites dipoles in each cylinder, which confines the
electric field around their poles.

Because the two dipoles are coaxially adjacent, their bright
mode can be stimulated to intensify the electric field confine-
ment at their gap and cause a resonance [30,31]. The dimer
resonance is set to f 30 � �E3 − E0�∕h, where h is Planck’s
constant. After excitation, distorted electrons at the higher en-
ergy levels tend to move back and occupy lower energy levels.
Hence, the pumped electrons to E3 mostly move to E2 and
level E0 becomes fully populated by the electron transitions
from E1, while electron transitions between E3 − E0 and
E2 − E1 are relatively slower.

Here, the intensity and duration of the electric field pump
are set so that electron population inversion between E0 and E2

does not happen and the system remains in thermal equilib-
rium. Based on the Fermi–Dirac relation below [27], a very
small portion of the E2 population remains in or moves to E3:

hN i∕N ji � 1∕f1� α · exp��Ei − Ej�∕kT �g: (7)

In Eq. (7), hi indicates average for the variable inside, α is a
constant which depends on the source of valence electrons
(e.g., α � 0.5 for donor impurities in semiconductors), k is
Boltzmann constant, and T is temperature in Kelvin scale.
An oscillating field in the high-quality-factor resonator can excite
the electrons of E3 tomove back to ground state and release their
energy by radiation. At the same time,N 2 refills lost electrons of
N 3 and this process continues to settlement of the electric field
inside the plasmonic resonator. Since the activemediumoverlaps
the eigenmode hotspot of surface plasmons spatially and spec-
trally, the feedback from the resonator enhances constructive
electron emission and dampens incoherent electron radiations.
As a result, electron emissions become coherent with surface
plasmons in this system and compensate a portion of lost
energy in the resonator. Consequently, an electric field of fre-
quency f 30 oscillates for a longer time in the resonator.

An FDTD-based commercial solver of Maxwell’s equations
is employed to analyze this model numerically [29]. The dimer
materials and dimensions are as follows: cylinders metal has
Drude properties of gold [32] with plasma frequency of
2068 THz and damping constant of 1 THz. The length of each
cylinder is 135 nm and the diameter is 20 nm; the gap between
them is 20 nm and is filled with indium phosphate (InP), with
optical index extracted from experiment [33]. This structure
is embedded in glass with dispersionless optical index of 1.5.
The intrinsic electric field enhancement of the plasmonic dimer
in the gap center point is shown in Fig. 2(b) for undoped InP.
The maximum quality factor of the resonator is around 18,
which shows that the dissipated power of the resonator in each
cycle of incident wave is a decent fraction of the oscillating
energy inside it.

Then, InP is doped with Sn n-type impurity so that it has
valence electron density of 2 × 1022 m−3 with �E3 − E0�∕h �
200 THz and �E2 − E1�∕h � 100 THz. Damping coefficient
for the E3 − E0 and E2 − E1 transitions is 1 THz and decay
time for both is 0.3 ns. The non-radiating transition between
E3 − E2 and E1 − E0 takes places with somewhat faster decay
lifetime of 0.1 ps. The performance of the described nano-
plasmonic oscillator when it is excited by a plane wave with
a Gaussian temporal profile is shown in Figs. 2(c)–2(e); the
excitation pulse amplitude is 5.6 × 105 V∕m, the half-power
span of the pulse is 40 fs, and the modulation frequency is f 30.

As Fig. 2(d) suggests, after the excitation pulse disappears,
electric field inside the cavity oscillates with a relatively smaller
amplitude but for a longer time. Since the cavity is lossy, the
oscillation cannot last for such a long time in the absence of the
active medium. However, after doping, InP turns to an active
material and absorbs the pump energy, then releases it with
slower pace to drive this long-last oscillation inside the cavity.
Figure 2(e) shows the electron population density of each level
over time, normalized by the population density of the active
molecules doped to InP. After the pulse disappears, the major-
ity of pumped electrons to E3 migrate to E2. This transition is
faster at the beginning but, as the number of electrons increases
in E2, the transition slows down. The cavity dampens electron
transition from E2 to E1 due to its low quality factor at f 21.
Nonetheless, the cavity has a good quality factor at f 30 and,
based on Eq. (7), there is a small population of electrons at
this energy level. As a result, any electric field of frequency
f 30 inside the resonator cavity may cause E3 electrons to release
a photon with f 30 and move to E0. The photons compensate
a portion of lost energy in the resonator, and therefore the
quality of plasmon oscillation increases. However, the energy
is not strong enough to overcome the loss and cause lasing.
Consequently, the amplitude of the oscillation decreases and
so the amount of released photons, which depends on the in-
tensity of the electric field inside the material, decreases over the
course of time. Therefore this system can be considered as an
amplitude-mediated nano-optical oscillator [34].

4. CHIMERA STATES DEMONSTRATION

Here, disc arrays of identical oscillators are used to demonstrate
the chimera states in a nano-resonator array system. We dem-
onstrate the concurrent incoherent and coherent oscillation

Fig. 2. Plasmonic nano-oscillator. (a) Geometry and excitation illus-
tration. (b) Electric field enhancement of the plasmonic dimer at the
center of its gap with undoped InP. (c) Time profile of the electric
field excitation. (d) Probed electric field at the dimer gap with doped
InP. (e) Electron population density normalized to the density of
active molecules in InP at the center of the plasmonic dimer.
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among the identical oscillators. A symmetric array is formed
using the oscillators discussed in the previous section. The
dimers are arranged vertically over the perimeter of a horizontal
circle, equally apart from each other. A schematic illustration of
the array is demonstrated in Fig. 3(a) for eight oscillators. Due
to the symmetry of the system, all the members have identical
resonance frequency.

The active medium is stimulated initially to push the elec-
trons in the active medium to higher energy levels and cause
population inversion. The higher-level electron populations of
all the oscillators can be kept identical by exciting the array with
cylindrically symmetric waves. Initial oscillations caused by the
pump settle down over the course of time. We assume the array
ended up with the following normalized population densities in
the active medium: N 0 ≈ 0.5, N 1 ≈ 0.45, N 2 ≈ 0.05, and
N 3 ≈ 0. Illuminating this array by additional plane wave pulse
with Gaussian temporal profile causes long-last oscillation in-
side the array. The electric field at the center point of each
member is a superposition of coupled electric fields from all
oscillators. This field is dominated by its vertical component,
and therefore the phase of each oscillator can be written as

φm�t��ω30t�arctanfΣn�1:N Im�Emn�t��∕Σn�1:N Re�Emn�t��g;
(8)

where Emn is coupled electric field of the n-th oscillator with the
center point of m-th modulated by the ω30 carrier. The main
portion of Em comes from self-induced electric field Emm while
a complex coupling coefficient κ, which is a function of dis-
tance, relates Emn to En. After the self-induced electric field,
closer neighbors have stronger contribution to Em because the
coupling decreases rapidly with distance. In the closely packed
system in which all the oscillators have strong coupling to the
neighbors, oscillators tie to a common phase and oscillate co-
herently. As an example, the temporal response of this array to a
pulse with amplitude of 1 V/m, span of 40 fs, and modulation
by 100 THz is depicted in Figs. 3(c) and 3(d) when the array
radius r � 27.5 nm.

Figure 3(b) depicts the probed electric field at the center of
oscillator 1 as an example of the array reaction to the incident
pulse turbulence. The inset figure shows the oscillation after
4000 ns. All the oscillators have equal amplitude and negligible
phase difference. The amplitude change over time is shown in
Fig. 3(c). Right after applying the pulse, there are transient re-
sponses in the array which disappear over time. As the transient
response diminishes, the oscillation amplitude decreases
smoothly. In this step, the oscillation amplitude of the members
barely degrades from the average of the array. In order to com-
pare the oscillations, the phase of the electric field at the probe
is sampled by

φk �< Em�kΔt� − ω30kΔt: (9)

In this equation, < represents phase, Δt is sampling time,
and k is sampling iteration. The equation helps study the varia-
tion in the phase of oscillators. The sampled phases of oscilla-
tors in Fig. 3 alongside the sampled phase of similar geometries
with r � 35, 70, and 140 nm are plotted in Fig. 4.

Figures 4(a) and 4(b) show the sampled amplitude and
phase of oscillators for r � 27.5 nm correspondingly. In this
case, the oscillators are coherent because all of them keep a
common phase over time. Although the sampled phase in
Fig. 4(b) shows a slight phase variation over time, all the
oscillators follow that change and stay synchronized. As the dis-
tance (d) between the oscillators increases, the coupling de-
creases by 1∕d 3∕2 [35] because the dimer dimensions are
comparable to the distance to the neighbor dimers. In this con-
dition, the interparticle coupling is governed mainly by
Coulombic forces between the localized surface plasmons.

For the r � 35 nm case, the coupling is strong enough to
tie some of the oscillators in coherency. Due to the symmetry of
geometry and excitation, members 3 and 7 of the array are
synchronized together and make a coherency domain. This
means the oscillator phase difference does not change over a
period of time which is quite larger than the oscillation period.
It is noteworthy that amplitude of oscillation decays steadily
over time for this group. The amplitudes of other array mem-
bers are higher than the first group in average, but they drop
below the first group periodically. These dips in amplitude
cause abrupt variations of oscillation phase and lead to bursts
of desynchronizations.

The oscillators return back to coherency after the bursts and
synchronize again after almost 180° of phase change. This pat-
tern repeats over time almost every 2000 ns. However, the sec-
ond group remains synchronized most of the time. As a result,

Fig. 3. Array schematic and an example of full coherency in the
oscillators. (a) Geometry of the array and the direction of incident
plane wave electric field pulse (sketched not to the real scale).
(b) Probed electric field at the center of oscillator 1, where the radius
of the array r � 27.5 nm. Inset shows the electric field at the center of
all the oscillators with time. (c) Oscillation amplitude variation for
different oscillators over time.
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the array in its current form is divided into two synchronized
populations in which one of the populations possesses quasi-
periodic bursts of desynchronization. Consequently, the state
is an indication of chimera oscillations in this nano-particle
system.

The states are not sensitive to the direction excitation pulse.
They will reappear with the same period and similar pattern,
but some oscillators may switch their initial chimera heads. The
oscillator which starts escaping is always the same in this sys-
tem: oscillator 1, which is the closest one to the excitation
source. This member starts oscillating in phase with its neigh-
bors; since this is a system dark mode with higher energy level,
the oscillations tend to transit to bright modes with lower

energy level and higher stability. In bright mode, neighbor
resonators oscillate 180° out of phase. Furthermore, oscillators
that escape from synchronization return back to their domain
shortly after the burst of desynchronization.

As the distance between the oscillators further increases,
their coupling further reduces. For the r � 70 nm case
[Figs. 4(e) and 4(f )], amplitude dips are weaker so phase

Fig. 4. Sampled amplitude and phase of oscillator electric fields at
their gap for different array geometries with eight oscillators and differ-
ent disc radii: (a), (b) r � 27.5 nm, (c), (d) r � 35 nm, (e), (f )
r � 70 nm, and (g), (h) r � 140 nm.

Fig. 5. Sampled phase of oscillator electric fields at their gap for
different array geometries with 16 oscillators and different disc radii:
(a) r � 54 nm, (b) r � 68.7 nm, (c) r � 137.3 nm, and (d) r �
274.6 nm. These radii are selected to keep the inter-oscillator distances
the same as those of the corresponding array in Fig. 4.
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pattern does not have abrupt transitions. Furthermore, the syn-
chronization is weaker and the array becomes a three-head chi-
mera due to three distinct phase patterns among the oscillators.
Interestingly, two groups of closed neighbors stay synchronized,
and any escape by a member is compensated by the other mem-
bers in the group to keep synchronization. For instance, oscil-
lators 4 and 6 escape from a common head with 5, but 5 tracks
their changes at t � 1100 fs and 4800 ns. As a result, the cou-
pling strength directly affects the chimera head number and
the strength of phase escape from synchronization. Figures 4(g)
and 4(h) show the array amplitude and phase for r � 140 nm;
in this case, the coupling is weak such that oscillators seem to
oscillate freely. As a result, their sampled phase diagram is
smoother. Some members are synchronized and keep track of
phase escapes of the other members from their head chimera.
If the coupling among the members becomes negligible for very
long distances, they oscillate freely but coherently. However,
this coherence is more sensitive to noise compared to the
coherence of strongly coupled oscillators.

The simulation is repeated for an array with 16 oscillators,
but the distance among neighboring oscillators is kept the same
as the previous example. The results are depicted in Fig. 5.
As expected, for the case of very close oscillators and strong
coupling [Fig. 5(b), r � 54 nm], the phase difference among
oscillators remains almost constant over the course of time,
with slight occasional variations for some members. In this case,
oscillators are synchronized and no phase escape takes place.
However, for r � 68.7 nm [Fig. 5(b)], in which the coupling
among oscillators is not as strong as in the first case, the oscil-
lators escape from coherency but synchronize back. Comparing
the corresponding configuration of eight oscillators, here the
period of escapes is twice as long. As the distance among
oscillators increases, they start to oscillate much more freely
[Figs. 5(c) and 5(d)]. As mentioned, the synchronization for
these cases is very sensitive to external turbulence and noise.

In comparing these eight cases, it can be concluded that syn-
chronization tendency among the oscillator decreases with in-
creasing distance. The chimera states merge where the coupling
between the oscillators is big enough to keep some of the
oscillators coherent but not strong enough to force all of them
to synchronize together. The time period of chimera escapes
also depends on the number of oscillators. One can expect
to observe similar states in extended systems with larger arrays
of oscillators. Even though the period of drifting increases in
the extended systems, they are always accompanied by coherent
domains; as a result, their combination can be called a chimera.

5. CONCLUSION

In summary, we demonstrate chimera states for plasmonic
nano-resonators. A surface-plasmon-based nano-optical oscilla-
tor is modeled using numerical implementation of Maxwell’s
equations coupled with the electron-rate equations of the active
medium located in the plasmon hotspot. It is shown that the
oscillator has a stable oscillation phase and amplitude over time.
Chimera states are demonstrated and studied using this oscil-
lator system in a disc array of closely and symmetrically coupled
oscillators. It was found that the synchronization and rate of
escape from synchronization depend on the distance of the

oscillators from each other. The chimera heads merge when
the coupling between the oscillators is big enough to keep some
of the oscillators coherent but not strong enough to force all of
them to synchronize together. These states are insensitive to the
direction of excitation turbulence, and the period of escape
depends on the number of oscillators in the array.
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