• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 4, 726 (2022)
Fang-Kun TIAN1、2, Li-Kun AI1、*, Guo-Yu SUN3, An-Huai XU1, Hua HUANG1, Qian GONG1, and Ming QI1
Author Affiliations
  • 1Key Laboratory of Terahertz Solid State Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China
  • 2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • 3College of Physics and Electronic Engineering,Hainan Normal University,Haikou 571158,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.04.011 Cite this Article
    Fang-Kun TIAN, Li-Kun AI, Guo-Yu SUN, An-Huai XU, Hua HUANG, Qian GONG, Ming QI. Influence of InyAl1-yAs graded buffer layer on properties of InP-HEMT materials[J]. Journal of Infrared and Millimeter Waves, 2022, 41(4): 726 Copy Citation Text show less
    References

    [1] W R Deal, K Leong, V Radisic et al. Low noise amplification at 0.67 THz using 30 nm InP HEMTs. IEEE Microwave & Wireless Components Letters, 21, 368-370(2011).

    [2] R A Metzger, A S Brown, L G Mccray et al. Structural and electrical properties of low temperature GaInAs. Journal of vacuum science & technology B, 11, 798-801(1993).

    [3] K Matsuno. High-quality InxGa1-xAs/InAlAs modulation-doped heterostructures grown lattice-mismatched on GaAs substrates. Journal of Crystal Growth, 111, 313-317(1991).

    [4] K M K H Leong, X Mei, W Yoshida et al. A 0.85 THz low noise amplifier using InP HEMT transistors. IEEE Microwave & Wireless Components Letters, 25, 397-399(2015).

    [5] X Mei, W Yoshida, M Lange et al. First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process. IEEE Electron Device Letters, 36, 327-329(2015).

    [6] W R Deal, K Leong, A Zamora et al. Recent progress in scaling InP HEMT TMIC technology to 850 GHz, 1-3(2014).

    [7] V Radisic, K Leong, X Mei et al. Power amplification at 0.65 THz using InP HEMTs. IEEE Transactions on Microwave Theory & Techniques, 60, 724-729(2012).

    [8] E P A M Bakkers, J A Van Dam, S De Franceschi et al. Epitaxial growth of InP nanowires on germanium. Nature materials, 3, 769-773(2004).

    [9] K Shinohara. 547-GHz f_t In_Ga_As-In_Al_As HEMTs With Reduced Source and Drain Resistance. IEEE Electron Device Lett, 25, 241-243(2004).

    [10] N Pan, J Elliott, H Hendriks et al. InAlAs/InGaAs high electron mobility transistors on low temperature InAlAs buffer layers by metalorganic chemical vapor deposition. Applied Physics Letters, 66, 212-214(1995).

    [11] U J Lewark, T Zwick, A Tessmann et al. Active 600GHz frequency multiplier-by-Six S-MMICs for submillimeter-wave generation, 1-3(2014).

    [12] T Nakayama, H Miyamoto. Modulation doped structure with thick strained InAs channel beyond the critical thickness. Journal of Crystal Growth, 201, 782-785(1999).

    [13] P C Chao, A J Tessmer, K Duh et al. W-band low-noise InAlAs/InGaAs lattice-matched HEMTs. IEEE Electron Device Letters, 11, 59-62(1990).

    [14] T Nakayama, H Miyamoto, E Oishi et al. High electron mobility 18300 cm2/V·s in the InAIAs/lnGaAs pseudomorphic structure obtained by channel indium composition modulation. Journal of Electronic Materials, 25, 555-558(1996).

    [15] R Lai, P K Bhattacharya, D Yang et al. Characteristics of 0.8- and 0.2-μm gate length InxGa 1-xAs/In0.52Al0.48As/InP (0.53⩽x⩽0.70) modulation-doped field-effect transistors at cryogenic temperatures. IEEE Transactions on Electron Devices, 39, 2206-2213(1992).

    [16] Y Fedoryshyn, M Ping, J Faist et al. Electron. Lab., ETH Zurich, Zürich, Switzerland. Quantum Electronics IEEE Journal of, 48, 885-890(2012).

    [17] E Y Lee, S Bhargava, M A Chin et al. Observation of misfit dislocations at the InxGa1-xAs/GaAs interface by ballistic-electron-emission microscopy. Applied Physics Letters, 69, 940-942(1996).

    [18] S-X Zhou, M Qi, L-K Ai et al. Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1- xAs/In0. 52Al0. 48As HEMT structures. Chinese Physics B, 25, 096801(2016).

    [19] M A Tischler, T Katsuyama, N A El-Masry et al. Defect reduction in GaAs epitaxial layers using a GaAsP‐InGaAs strained‐layer superlattice. Applied Physics Letters, 46, 294-296(1985).

    [20] B Lee, J H Baek, J H Lee et al. Optical properties of InGaAs linear graded buffer layers on GaAs grown by metalorganic chemical vapor deposition. Applied physics letters, 68, 2973-2975(1996).

    [21] Y Gu, Y G Zhang, K Wang et al. InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm. Applied Physics Letters, 99, 445(2011).

    [22] M K Hudait, Y Lin, S A Ringel. Strain relaxation properties of InAsyP1-y metamorphic materials grown on InP substrates. Journal of Applied Physics, 105, 061643-061643-061612(2009).

    [23] J Kirch, T Garrod, S Kim et al. InAs_yP_(1-y) metamorphic buffer layers on InP substrates for mid-IR diode lasers. Journal of Crystal Growth, 312, 1165-1169(2010).

    [24] I S Vasil’evskii, G B Galiev, E A Klimov et al. Interrelation of the construction of the metamorphic InAlAs/InGaAs nanoheterostructures with the InAs content in the active layer of 76-100% with their surface morphology and electrical properties. Semiconductors, 45, 1158(2011).

    [25] J Tersoff. Dislocations and strain relief in compositionally graded layers. Applied physics letters, 62, 693-695(1993).

    [26] I J Fritz, S T Picraux, L R Dawson et al. Dependence of critical layer thickness on strain for InxGa1-xAs/GaAs strained‐layer superlattices. Applied Physics Letters, 46, 967-969(1985).

    [27] Y Y Cao, Y G Zhang, Y Gu et al. 2.7 m InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers. Applied Physics Letters, 102, 458(2013).

    [28] Y Gu, Y Zhang, K Wang et al. InAlAs Graded Metamorphic Buffer with Digital Alloy Intermediate Layers. Japanese Journal of Applied Physics, 51, 0205(2012).

    [29] X Liu, H Song, G Q Miao et al. Influence of thermal annealing duration of buffer layer on the crystalline quality of In 0.82 Ga 0.18 As grown on InP substrate by LP-MOCVD. Applied Surface Science, 257, 1996-1999(2011).

    [30] A Sayari, N Yahyaoui, A Meftah et al. Residual strain and alloying effects on the vibrational properties of step-graded InxAl1- xAs layers grown on GaAs. Journal of luminescence, 129, 105-109(2009).

    [31] F Capotondi, G Biasiol, I Vobornik et al. Two-dimensional electron gas formation in undoped In0.75Ga0.25As/In0.75Al0.25As quantum wells. Journal of vacuum ence & technology B, 22, 702-706(2004).

    [32] J.-I Chyi,, Shieh et al. Material properties of compositional graded InxGa1-xAs and InxAl1-xAs epilayers grown on GaAs substrates. Journal of Applied Physics, 79, 8367-8367(1996).

    [33] Y Cordier, D Ferre. InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps. Journal of crystal growth, 201, 263-266(1999).

    [34] W E H Hoke, C S Whelan. Metamorphic HEMT technology exemplified by InAlAs/InGaAs/GaAs HEMTs. Lattice Eng, 229(2012).

    [35] D Kohen, X S Nguyen, R I Made et al. Preventing phase separation in MOCVD-grown InAlAs compositionally graded buffer on silicon substrate using InGaAs interlayers - ScienceDirect. Journal of Crystal Growth, 478, 64-70(2017).

    [36] N J Quitoriano, E A Fitzgerald. Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation. Journal of Applied Physics, 102, 152101-152110(2007).

    [37] Y Sun, J Dong, S Yu et al. High quality InP epilayers grown on GaAs substrates using metamorphic AlGaInAs buffers by metalorganic chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 28, 745-749(2017).

    [38] F Glas. Elastic state and thermodynamical properties of inhomogeneous epitaxial layers: Application to immiscible III‐V alloys. Journal of Applied Physics, 62, 3201-3208(1987).

    [39] J Tersoff. Stress-driven alloy decomposition during step-flow growth. Physical Review Letters, 77, 2017(1996).

    [40] F Tian, L Ai, A Xu et al. InGaAsPBi grown on InP substrate by gas source molecular beam epitaxy. Materials Research Express, 8, 026404(2021).

    Fang-Kun TIAN, Li-Kun AI, Guo-Yu SUN, An-Huai XU, Hua HUANG, Qian GONG, Ming QI. Influence of InyAl1-yAs graded buffer layer on properties of InP-HEMT materials[J]. Journal of Infrared and Millimeter Waves, 2022, 41(4): 726
    Download Citation