• High Power Laser Science and Engineering
  • Vol. 11, Issue 6, 06000e91 (2023)
Zhen-Zhe Lei1、3, Yan-Jun Gu1、3、*, Zhan Jin1、3, Shingo Sato1、3, Alexei Zhidkov1、3, Alexandre Rondepierre1、3, Kai Huang2、3, Nobuhiko Nakanii2、3, Izuru Daito2、3, Masakai Kando1、2、3, and Tomonao Hosokai1、3
Author Affiliations
  • 1SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
  • 2Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), Kizugawa-city, Kyoto, Japan
  • 3RIKEN SPring-8 Center, Sayo, Hyogo, Japan
  • show less
    DOI: 10.1017/hpl.2023.82 Cite this Article Set citation alerts
    Zhen-Zhe Lei, Yan-Jun Gu, Zhan Jin, Shingo Sato, Alexei Zhidkov, Alexandre Rondepierre, Kai Huang, Nobuhiko Nakanii, Izuru Daito, Masakai Kando, Tomonao Hosokai. Supersonic gas jet stabilization in laser–plasma acceleration[J]. High Power Laser Science and Engineering, 2023, 11(6): 06000e91 Copy Citation Text show less

    Abstract

    Supersonic gas jets generated via a conical nozzle are widely applied in the laser wakefield acceleration of electrons. The stability of the gas jet is critical to the electron injection and the reproducibility of the wakefield acceleration. Here we discussed the role of the stilling chamber in a modified converging–diverging nozzle to dissipate the turbulence and to stabilize the gas jets. By the fluid dynamics simulations and the Mach–Zehnder interferometer measurements, the instability originating from the nonlinear turbulence is studied and the mechanism to suppress the instability is proposed. Both the numerical and experimental results prove that the carefully designed nozzle with a stilling chamber is able to reduce the perturbation by more than 10% compared with a simple-conical nozzle.
    $$\begin{align}\frac{A^{\ast }}{A}=M{\left[1+\frac{\gamma -1}{\gamma +1}\left({M}^2-1\right)\right]}^{-\frac{\gamma +1}{2\left(\gamma -1\right)}},\end{align}$$ ((1))

    View in Article

    $$\begin{align}\kern-1pt\frac{\rho }{\rho_0}={\left(1+\frac{\gamma -1}{2}{M}^2\right)}^{-\frac{1}{\gamma -1}},\qquad\quad\end{align}$$ ((2))

    View in Article

    $$\begin{align}\kern-1.9pt\frac{T}{T_0}={\left(1+\frac{\gamma -1}{2}{M}^2\right)}^{-1},\qquad\qquad\ \,\end{align}$$ ((3))

    View in Article

    $$\begin{align}\kern-1pt\frac{p}{p_0}={\left(1+\frac{\gamma -1}{2}{M}^2\right)}^{-\frac{\gamma }{\gamma -1}},\qquad\quad\end{align}$$ ((4))

    View in Article

    Zhen-Zhe Lei, Yan-Jun Gu, Zhan Jin, Shingo Sato, Alexei Zhidkov, Alexandre Rondepierre, Kai Huang, Nobuhiko Nakanii, Izuru Daito, Masakai Kando, Tomonao Hosokai. Supersonic gas jet stabilization in laser–plasma acceleration[J]. High Power Laser Science and Engineering, 2023, 11(6): 06000e91
    Download Citation