• Chinese Optics Letters
  • Vol. 20, Issue 7, 071301 (2022)
Sumei Wang1, Jinhua Zhao1、*, Jinjun Gu1, Mingyang Bu1, Li Fan1, Shuang Li1, Xifeng Qin1, Yicun Yao2, Yingying Ren3, and Lei Wang4
Author Affiliations
  • 1School of Science, Shandong Jianzhu University, Jinan 250101, China
  • 2Shandong Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
  • 3Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • 4School of Physics, Shandong University, Jinan 250100, China
  • show less
    DOI: 10.3788/COL202220.071301 Cite this Article Set citation alerts
    Sumei Wang, Jinhua Zhao, Jinjun Gu, Mingyang Bu, Li Fan, Shuang Li, Xifeng Qin, Yicun Yao, Yingying Ren, Lei Wang. LiNbO3 channel and ridge waveguides based on helium ion implantation combined with lithography and precise diamond dicing[J]. Chinese Optics Letters, 2022, 20(7): 071301 Copy Citation Text show less
    References

    [1] R. Wolf, I. Breunig, H. Zappe, K. Buse. Scattering-loss reduction of ridge waveguides by sidewall polishing. Opt. Express, 26, 19815(2018).

    [2] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).

    [3] S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, A. J. Danner. Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening. Opt. Express, 26, 4421(2018).

    [4] P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, C. Silberhorn. Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits. New J. Phys., 19, 123009(2017).

    [5] I. Krasnokutska, J. J. Tambasco, X. Li, A. Peruzzo. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express, 26, 897(2018).

    [6] Z. H. Chen, Y. W. Wang, H. H. Zhang, H. Hu. Silicon grating coupler on a lithium niobate thin film waveguide. Opt. Mater. Express, 8, 1253(2018).

    [7] J. M. Lv, Y. Z. Cheng, J. R. V. de Aldana, X. T. Hao, F. Chen. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal. J. Lightwave Technol., 34, 3587(2016).

    [8] R. Schiek, A. S. Solntsev, D. N. Neshev. Temporal dynamics of all-optical switching in quadratic nonlinear directional couplers. Appl. Phys. Lett., 100, 111117(2012).

    [9] M. R. Zhang, W. Ai, K. X. Chen, W. Jin, K. S. Chiang. A lithium-niobate waveguide directional coupler for switchable mode multiplexing. IEEE Photon. Technol. Lett., 30, 1764(2018).

    [10] Y. Yao, W. Wang, B. Zhang. Designing MMI structured beam-splitter in LiNbO3 crystal based on a combination of ion implantation and femtosecond laser ablation. Opt. Express, 26, 19648(2018).

    [11] J. Lv, Y. Cheng, J. R. Vazquez de Aldana, X. Hao, F. Chen. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal. J. Lightwave. Technol., 34, 3587(2016).

    [12] Q. Zhang, M. Li, J. Xu, Z. Lin, H. Yu, M. Wang, Z. Fang, Y. Cheng, Q. Gong, Y. Li. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photonics Res., 7, 503(2019).

    [13] P. Aashna, K. Thyagarajan. Polarization splitter based on a three waveguide directional coupler using quantum mechanical analogies. J. Opt., 19, 065805(2017).

    [14] F. Chen, J. R. V. de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev., 8, 251(2014).

    [15] C. X. Liu, J. L. You, S. Q. Lin, J. Y. Chen, M. Tang, S. B. Lin, R. L. Zheng, L. L. Fu, L. L. Zhang. A ridge waveguide constructed by H+ implantation and precise diamond blade dicing in high-gain Nd3+-doped laser glass. Optik, 225, 165881(2021).

    [16] A. Panepinto, D. Cossement, R. Snyders. Experimental and theoretical study of the synthesis of N-doped TiO2 by N ion implantation of TiO2 thin films. Appl. Surf. Sci., 541, 148493(2021).

    [17] J. Rams, J. Olivares, P. J. Chandler, P. D. Townsend. Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides. J. Appl. Phys., 87, 3199(2000).

    [18] L. Wan, W. Luo, Y. Yuan, K. Zhang, S. Huang, S. Qiao, X. Pan, C. Wu. Effects of helium implantation fluence on the crystal-ion-slicing fabrication of Y-cut lithium niobate film. Mater. Express, 11, 717(2021).

    [19] N. Cherkashin, N. Daghbouj, G. Seine, A. Claverie. Impact of He and H relative depth distributions on the result of sequential He+ and H+ ion implantation and annealing in silicon. J. Appl. Phys., 123, 161556(2018).

    [20] S. M. Zhang, X. H. Liu, X. F. Qin, K. M. Wang, X. Liu. Damage, refractive index and near-field intensity profiles in a single-mode waveguide of LiNbO3 by 400 keV He ion implantation. J. Phys. D, 43, 455303(2010).

    [21] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910(2020).

    [22] M. F. Volk, S. Suntsov, C. E. Ruter, D. Kip. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing. Opt. Express, 24, 1386(2016).

    [23] J. H. Zhao, X. S. Jiao, Y. Y. Ren, J. J. Gu, S. M. Wang, M. Y. Bu, L. Wang. Lithium niobate planar and ridge waveguides fabricated by 3 MeV oxygen ion implantation and precise diamond dicing. Chin. Opt. Lett., 19, 060009(2021).

    [24] Y. Cheng, J. Lv, S. Akhmadaliev, S. Zhou, Y. Kong, F. Chen. Mid-infrared ridge waveguide in MgO: LiNbO3 crystal produced by combination of swift O5+ ion irradiation and precise diamond blade dicing. Opt. Mater., 48, 209(2015).

    [25] H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, D. Y. Shen. Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation. Appl. Opt., 40, 3759(2001).

    [26] L. Wang, F. Chen, X. L. Wang, L. L. Wang, K.-M. Wang, L. Gao, H.-J. Ma, R. Nie. Si2+ ion implanted into stoichiometric lithium niobate crystals: waveguide characterization and lattice disorder analysis. Nucl. Instrum. Meth. B, 251, 104(2006).

    [27] L. Wang, F. Chen, X.-L. Wang, K.-M. Wang, Y. Jiao, L.-L. Wang, X.-S. Li, Q.-M. Lu, H.-J. Ma, R. Nie. Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation. J. Appl. Phys., 101, 053112(2007).

    Data from CrossRef

    [1] Chun-Xiao Liu, Yan Lu, Wei-Jie Ding, Jia-Li You, Liao-Lin Zhang, Li-Li Fu, Qing-Yang Yue, She-Bao Lin, Yan-Jun Zhou. One-dimensional and two-dimensional Er3+-doped germanate glass waveguides by combination of He+ ion implantation and precise diamond blade dicing. Vacuum, 111743(2022).

    Sumei Wang, Jinhua Zhao, Jinjun Gu, Mingyang Bu, Li Fan, Shuang Li, Xifeng Qin, Yicun Yao, Yingying Ren, Lei Wang. LiNbO3 channel and ridge waveguides based on helium ion implantation combined with lithography and precise diamond dicing[J]. Chinese Optics Letters, 2022, 20(7): 071301
    Download Citation