[1] Girolamo H J. Decade of progress 1991—2001: HMD technology ready for platform integration[J]. Proceedings of SPIE, 4361, 43-70(2001).
[2] Shi X G, Xue Z H, Li H H et al. Review of augmented reality display technology[J]. Chinese Optics, 14, 1146-1161(2021).
[3] Modrzyk D, Martin S, Crawford A et al. Mira display processor for AR/VR systems[J]. SID Symposium Digest of Technical Papers, 50, 326-329(2019).
[4] O’Connor P, Meekhof C, McBride C et al. Custom silicon and sensors developed for a 2nd generation mixed reality user interface[C], C186-C187(2019).
[5] Kress B C[M]. Optical architectures for augmented-, virtual-, and mixed-reality headsets(2020).
[6] Hsiang E L, Yang Z Y, Yang Q et al. Prospects and challenges of mini-LED, OLED, and micro-LED displays[J]. Journal of the Society for Information Display, 29, 446-465(2021).
[7] Xiong J H, Hsiang E L, He Z Q et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light: Science & Applications, 10, 216(2021).
[8] Haas G. Microdisplays for augmented and virtual reality[J]. SID Symposium Digest of Technical Papers, 49, 506-509(2018).
[9] Hashimoto S, Akimoto O, Ishikawa H et al. SXRD (silicon X-Tal reflective display): a new display device for projection displays[J]. SID Symposium Digest of Technical Papers, 36, 1362-1365(2005).
[10] Ghosh A, Donoghue E P, Khayrullin I et al. Ultra-high-brightness 2K×2K full-color OLED microdisplay using direct patterning of OLED emitters[J]. SID Symposium Digest of Technical Papers, 48, 226-229(2017).
[11] Lazarev G, Chen P J, Strauss J et al. Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics[J]. Optics Express, 27, 16206-16249(2019).
[12] Zhang Z C, You Z. Fundamentals of die-level assembly techniques for phase-only liquid crystal on silicon devices[J]. Acta Electronica Sinica, 43, 2322-2330(2015).
[13] Huang H C, Zhang B L, Kwok H S et al. Color filter liquid-crystal-on-silicon microdisplays[J]. SID Symposium Digest of Technical Papers, 36, 880-883(2005).
[14] Cuypers D, de Smet H, van Calster A. VAN LCOS microdisplays: a decade of technological evolution[J]. Journal of Display Technology, 7, 127-134(2011).
[15] Duelli M, Shemo D M, Hendrix K D et al. High performance contrast enhancing films for VAN-mode LCoS panels[J]. SID Symposium Digest of Technical Papers, 36, 892-895(2005).
[16] Cuypers D, de Smet H, van Calster A. Electronic compensation for fringe-field effects in VAN LCOS microdisplays[J]. SID Symposium Digest of Technical Papers, 39, 228-231(2008).
[17] Anderson J E, Chen C, Bos P J. Fast VAN LCoS microdisplay[J]. SID Symposium Digest of Technical Papers, 36, 1366-1369(2005).
[18] Chen Y X, Xia J, Sun W F et al. High resolution and high framerate LCoS display and driver[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2, 88-95(2020).
[19] Furuya M, Sterling R, Bleha W et al. D-ILA® full resolution 8K projector[C], 234-242(2009).
[20] Vermandel M, van den Wouwer D, Coosemans T et al. A novel 0.82″ QXGA analog LCOS micro display for professional applications[J]. SID Symposium Digest of Technical Papers, 38, 105-108(2007).
[21] Shimizu S, Ochi Y, Nakano A et al. Fully digital D-ILA™ device for consumer applications[J]. SID Symposium Digest of Technical Papers, 35, 72-75(2004).
[22] Fan-Chiang K H, Yen C C, Wu C H et al. LCOS panel using novel color sequential technology[J]. SID Symposium Digest of Technical Papers, 38, 150-153(2007).
[23] Lee J H, Kim E, Lee S et al. A high definition LCoS backplane with HV CMOS switches and dual storages pixel array[C], 179-180(2015).
[24] Abeeluck A K, Iverson A, Goetz H et al. High-performance displays for wearable and HUD applications[J]. SID Symposium Digest of Technical Papers, 49, 768-771(2018).
[25] Fung K, Waller C, Eisenbrandt E et al. Q-view: a compression technology for UHD resolution, low power, and low cost LCOS panels[J]. SID Symposium Digest of Technical Papers, 50, 342-344(2019).
[26] Kanazawa M, Kusakabe Y. Ultrahigh-definition LCOS projectors[J]. Proceedings of the IEEE, 101, 89-98(2013).
[27] Asaki R, Yokoyama S, Kitagawa H et al. High-resolution OLED microdisplay for wearable displays[J]. SID Symposium Digest of Technical Papers, 45, 219-222(2014).
[28] Lu P C, Huang G D, Yang S J et al. Highest PPI micro-OLED display sustain for near-eye application[J]. SID Symposium Digest of Technical Papers, 50, 725-726(2019).
[29] Vogel U, Wartenberg P, Richter B et al. OLED-on-silicon microdisplays: technology, devices, applications[C], 90-93(2018).
[30] Ghosh A, Khayrullin I, Wang Q et al. OLED micro-displays for VR/AR applications[J]. SID Symposium Digest of Technical Papers, 50, 26-27(2019).
[31] Kim C, Jung J H, Sung D Y et al. Development of 3, 000 ppi RGB direct patterning OLED micro-display[J]. Proceedings of the International Display Workshops, 28, 209-212(2021).
[32] Ji Y, Gong S P, Mu T Z et al. Lifetime of OLED-on-silicon microdisplay based on luminance decay model[J]. Acta Optica Sinica, 41, 1923003(2021).
[33] Fung M K, Li Y Q, Liao L S. Tandem organic light-emitting diodes[J]. Advanced Materials, 28, 10381-10408(2016).
[34] Hamer J, Kondakova M, Spindler J et al. High-performance OLED microdisplays made with multi-stack OLED formulations on CMOS backplanes[J]. Proceedings of SPIE, 11473, 114730F(2020).
[35] Chiba T, Pu Y J, Miyazaki R et al. Ultra-high efficiency by multiple emission from stacked organic light-emitting devices[J]. Organic Electronics, 12, 710-715(2011).
[36] Ghosh A P, Ali T A, Khayrullin I et al. Recent advances in small molecule OLED-on-silicon microdisplays[J]. Proceedings of SPIE, 7415, 74150Q(2009).
[37] Motoyama Y, Sugiyama K, Tanaka H et al. High-efficiency OLED microdisplay with microlens array[J]. Journal of the Society for Information Display, 27, 354-360(2019).
[38] Vogel U, Richter B, Wartenberg P et al. OLED microdisplays in near-to-eye applications: challenges and solutions[J]. Proceedings of SPIE, 10335, 103350(2017).
[39] Prache O. Full color SVGA+ OLED on silicon microdisplay[J]. Journal of the Society for Information Display, 10, 133-138(2002).
[40] Kimura K, Onoyama Y, Tanaka T et al. New pixel driving circuit using self-discharging compensation method for high-resolution OLED microdisplays on a silicon backplane[J]. SID Symposium Digest of Technical Papers, 48, 398-402(2017).
[41] Wacyk I, Ghosh A, Prache O et al. Ultra-high resolution and high-brightness AMOLED[J]. Proceedings of SPIE, 8383, 83830Q(2012).
[42] Usui T, Nakajima Y, Shiga T. A digital driving method using pulse-density modulation with a random dither matrix for higher motion image quality[J]. Journal of the Society for Information Display, 30, 198-208(2022).
[43] Kimura M, Nishinohara D, Nishiyori T et al. Pulse-width modulation with current uniformization for AM-OLED micro-displays on Si LSI chips[J]. Journal of the Society for Information Display, 27, 402-408(2019).
[44] Onoyama Y, Yamashita J, Kitagawa H et al. 0.5-inch XGA micro-OLED display on a silicon backplane with high-definition technologies[J]. SID Symposium Digest of Technical Papers, 43, 950-953(2012).
[45] Ran F, Chu C, Ji Y et al. Current PWM pixel driving circuit for OLED recession compensation[J]. Chinese Journal of Liquid Crystals and Displays, 28, 534-538(2013).
[46] Wartenberg P, Richter B, Brenner S et al. A new 0.64" 720 p OLED microdisplay for application in industrial see-through AR HMD[J]. SID Symposium Digest of Technical Papers, 50, 717-720(2019).
[47] Vogel U, Beyer B, Schober M et al. Ultra-low power OLED microdisplay for extended battery life in NTE displays[J]. SID Symposium Digest of Technical Papers, 48, 1125-1128(2017).
[48] Day J, Li J, Lie D Y C et al. III-Nitride full-scale high-resolution microdisplays[J]. Applied Physics Letters, 99, 031116(2011).
[49] Chen Z, Yan S K, Danesh C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges[J]. Journal of Physics D: Applied Physics, 54, 123001(2021).
[50] Tsuchiyama K, Yamane K, Utsunomiya S et al. Monolithic integration of Si-MOSFET and GaN-LED using Si/SiO2/GaN-LED wafer[J]. Applied Physics Express, 9, 104101(2016).
[51] Kawanishi H, Onuma H, Maegawa M et al. High-resolution and high-brightness full-colour “Silicon Display” for augmented and mixed reality[J]. Journal of the Society for Information Display, 29, 57-67(2021).
[52] Chen C J, Chen H C, Liao J H et al. Fabrication and characterization of active-matrix 960×540 blue GaN-based micro-LED display[J]. IEEE Journal of Quantum Electronics, 55, 3300106(2019).
[53] Wu Y, Ma J, Su P et al. Full-color realization of micro-LED displays[J]. Nanomaterials, 10, E2482(2020).
[54] Yadavalli K, Chuang C L, El-Ghoroury H S. Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications[J]. Proceedings of SPIE, 11310, 113100Z(2020).
[55] Templier F. High-resolution GaN microdisplays and solution for full-color devices for AR/MR applications[J]. SID Symposium Digest of Technical Papers, 52, 305-307(2021).
[56] Zhang L, Ou F, Chong W C et al. Wafer scale hybrid monolithic integration of Si-based IC and III-V epilayers-a mass manufacturable approach for active matrix micro-LED displays[J]. SID Symposium Digest of Technical Papers, 49, 786-789(2018).
[57] Liang K L, Kuo W H, Shen H T et al. Advances in color-converted micro-LED arrays[J]. Japanese Journal of Applied Physics, 60, SA0802(2021).
[58] Onuma H, Maegawa M, Kurisu T et al. 1,053 ppi full-color “Silicon display” based on Micro-LED technology[J]. SID Symposium Digest of Technical Papers, 50, 353-355(2019).
[59] Templier F, Benaïssa L, Aventurier B et al. A novel process for fabricating high-resolution and very small pixel-pitch GaN LED microdisplays[J]. SID Symposium Digest of Technical Papers, 48, 268-271(2017).
[60] Lee V W, Twu N, Kymissis I. Micro-LED technologies and applications[J]. Information Display, 32, 16-23(2016).
[61] Steudel S, Vertommen J, Le Boulbar E et al. MircoLED display integration on 300 mm advanced CMOS platform[J]. SID Symposium Digest of Technical Papers, 53, 748-751(2022).
[62] Li X B, Wu L, Liu Z J et al. Design and characterization of active matrix LED microdisplays with embedded visible light communication transmitter[J]. Journal of Lightwave Technology, 34, 3449-3457(2016).
[63] Dupré L, Marra M, Verney V et al. Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications[J]. Proceedings of SPIE, 10104, 1010422(2017).
[64] Qi L H, Zhang X, Chong W C et al. 848 ppi high-brightness active-matrix micro-LED micro-display using GaN-on-Si epi-wafers towards mass production[J]. Optics Express, 29, 10580-10591(2021).
[65] Huang Y G, Hsiang E L, Deng M Y et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives[J]. Light: Science & Applications, 9, 105(2020).
[66] Park J, Baek W, Geum D M et al. Understanding the sidewall passivation effects in AlGaInP/GaInP micro-LED[J]. Nanoscale Research Letters, 17, 29(2022).
[67] Gandrothula S, Kamikawa T, Shapturenka P et al. Optical and electrical characterizations of micro-LEDs grown on lower defect density epitaxial layers[J]. Applied Physics Letters, 119, 142103(2021).
[68] Seong J, Jang J, Lee J et al. CMOS backplane pixel circuit with leakage and voltage drop compensation for an micro-LED display achieving 5000 PPI or higher[J]. IEEE Access, 8, 49467-49476(2020).
[69] Templier F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems[J]. Journal of the Society for Information Display, 24, 669-675(2016).
[70] Hornbeck L J. Digital Light Processing for high-brightness high-resolution applications[J]. Proceedings of SPIE, 3013, 27-40(1997).
[71] Hornbeck L. Digital light processing: a new MEMS-based display technology (keynote address)[C], 297-304(1996).
[72] Templier F[M]. OLED Microdisplays: Technology and Applications(2014).
[73] Fidler F, Balbekova A, Noui L et al. Laser beam scanning in XR: benefits and challenges[J]. Proceedings of SPIE, 11765, 1176502(2021).
[74] Amor G, Roth E, Sharon D et al. Multiple MEMS mirrors synchronization techniques, modeling, and applications[J]. Proceedings of SPIE, 11697, 116970C(2021).
[75] Hofmann U, Janes J, Quenzer H J. High-Q MEMS resonators for laser beam scanning displays[J]. Micromachines, 3, 509-528(2012).
[76] Akutsu K, Seino S, Ogawa Y et al. A compact retinal scan near-eye display[C](2019).
[77] Boni N, Carminati R, Mendicino G et al. Quasi-static PZT actuated MEMS mirror with 4×3 mm2 reflective area and high robustness[J]. Proceedings of SPIE, 11697, 1169708(2021).
[78] Rajagopalan B. STMicroelectronics: laser beam scanning: the ideal solution for AR wearable applications[J]. Proceedings of SPIE, 11764, 1176416(2021).
[79] Rajagopalan B. Laser Beam Scanning (LBS) technologies to solve AR challenges[J]. Proceedings of SPIE, 11932, 1193203(2022).
[80] Reitterer J, Chen Z, Balbekova A et al. Ultra-compact micro-electro-mechanical laser beam scanner for augmented reality applications[J]. Proceedings of SPIE, 11765, 1176504(2021).
[81] Petrak O, Schwarz F, Pohl L et al. Laser beam scanning based AR-display applying resonant 2D MEMS mirrors[J]. Proceedings of SPIE, 11765, 1176503(2021).
[82] Dai Y P, Geng W D, Sun Z L. The core of the LCoS: design analysis for display SOC[J]. Optoelectronic Technology, 21, 79-88(2001).
[83] Huang R, Wang W B, Wang X H et al. QVGA liquid crystal on silicon microdisplay[J]. Opto-Electronic Engineering, 36, 131-134(2009).
[84] Yang J B, Qin C B, Zhang B X et al. Organic light emitting diodes on silicon micro-display with high resolution and large size[J]. Optoelectronic Technology, 39, 181-185(2019).
[85] Song D Y, Fang Y L, Wang L et al. Development and application of micromation LED display technologies[J]. Optoelectronic Technology, 42, 64-71(2022).
[86] Yan Z W, Yan Q, Li D L et al. Research progress of high integration density μLED display technology[J]. Chinese Journal of Luminescence, 41, 1309-1317(2020).
[87] Chen Y X, Xia J. A high contrast digital driving 0.39 inch LCoS panel optimized for waveguide AR glass[J]. Proceedings of the International Display Workshops, 27, 727(2020).
[88] Kang C M, Lee H. Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications[J]. Journal of Information Display, 23, 19-32(2022).
[89] Seong J, Jang J, Lee J et al. Multi-bit MIP(Memory-in-Pixel)-based pixel circuit of CMOS backplane for micro-LED display[J]. SID Symposium Digest of Technical Papers, 51, 359-362(2020).