• Journal of Semiconductors
  • Vol. 44, Issue 6, 062802 (2023)
Wei Wang1、2, Shudong Hu1, Zilong Wang1, Kaisen Liu1, Jinfu Zhang1, Simiao Wu1, Yuxia Yang1, Ning Xia3, Wenrui Zhang1、4、*, and Jichun Ye1、4、**
Author Affiliations
  • 1Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • 2The Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
  • 3Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
  • 4Yongjiang Laboratory, Ningbo 315201, China
  • show less
    DOI: 10.1088/1674-4926/44/6/062802 Cite this Article
    Wei Wang, Shudong Hu, Zilong Wang, Kaisen Liu, Jinfu Zhang, Simiao Wu, Yuxia Yang, Ning Xia, Wenrui Zhang, Jichun Ye. Exploring heteroepitaxial growth and electrical properties of α-Ga2O3 films on differently oriented sapphire substrates[J]. Journal of Semiconductors, 2023, 44(6): 062802 Copy Citation Text show less
    References

    [1] K Konishi, K Goto, H Murakami et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 110, 103506(2017).

    [2] Z Z Hu, H Zhou, Q Feng et al. Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 39, 1564(2018).

    [3] W B Hao, Q M He, X Z Zhou et al. 2.6 kV NiO/Ga2O3 heterojunction diode with superior high-temperature voltage blocking capability. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 105(2022).

    [4] H H Gong, X H Chen, Y Xu et al. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p–n heterojunction diode. Appl Phys Lett, 117, 022104(2020).

    [5] X Z Zhou, Y J Ma, G W Xu et al. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. Appl Phys Lett, 121, 223501(2022).

    [6] N Moser, J McCandless, A Crespo et al. Ge-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 38, 775(2017).

    [7] R Jinno, C S Chang, T Onuma et al. Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)2O3 on m-plane sapphire. Sci Adv, 7, eabd5891(2021).

    [8] M Kracht, A Karg, M Feneberg et al. Anisotropic optical properties of metastable (011-2) α–Ga2O3 grown by plasma-assisted molecular beam epitaxy. Phys Rev Applied, 10, 024047(2018).

    [9] Z Y Wu, Z X Jiang, P Y Song et al. Nanowire-seeded growth of single-crystalline (010) β-Ga2 O3 nanosheets with high field-effect electron mobility and on/off current ratio. Small, 15, e1900580(2019).

    [10] W R Zhang, J G Zhang, L Chen et al. Non-equilibrium epitaxy of metastable polymorphs of ultrawide-bandgap gallium oxide. Appl Phys Lett, 120, 072101(2022).

    [11] J G Zhang, W Wang, S M Wu et al. Exploratory phase stabilization in heteroepitaxial gallium oxide films by pulsed laser deposition. J Alloys Compd, 935, 168123(2023).

    [12] C Wu, D Y Guo, L Y Zhang et al. Systematic investigation of the growth kinetics of β-Ga2O3 epilayer by plasma enhanced chemical vapor deposition. Appl Phys Lett, 116, 072102(2020).

    [13] W Wang, Q L Yuan, D Y Han et al. High-temperature deep ultraviolet photodetector based on a crystalline Ga2O3-diamond heterostructure. IEEE Electron Device Lett, 43, 2121(2022).

    [14] Y B Zhang, J Zheng, P P Ma et al. Growth and characterization of β-Ga2O3 thin films grown on off-angled Al2O3 substrates by metal-organic chemical vapor deposition. J Semicond, 43, 092801(2022).

    [15] H D Sun, K H Li, C G Torres Castanedo et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst Growth Des, 18, 2370(2018).

    [16] X H Hou, H D Sun, S B Long et al. Ultrahigh-performance solar-blind photodetector based on α-phase-dominated Ga2O3 film with record low dark current of 81 fA. IEEE Electron Device Lett, 40, 1483(2019).

    [17] S Nakagomi, Y Kokubun. Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate. J Cryst Growth, 349, 12(2012).

    [18] X H Chen, F F Ren, S L Gu et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photon Res, 7, 381(2019).

    [19] M Marezio, J P Remeika. Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2−xFexO3. J Chem Phys, 46, 1862(1967).

    [20] S Nakagomi, S Kaneko, Y Kokubun. Crystal orientations of β-Ga2O3 thin films formed on m-plane and r-plane sapphire substrates. Phys Status Solidi B, 252, 612(2015).

    [21] Y L Cheng, Y Xu, Z Li et al. Heteroepitaxial growth of α-Ga2O3 thin films on a-, c- and r-plane sapphire substrates by low-cost mist-CVD method. J Alloys Compd, 831, 154776(2020).

    [22] H Z Hu, C Wu, N Zhao et al. Epitaxial growth and solar-blind photoelectric characteristic of Ga2O3 film on various oriented sapphire substrates by plasma-enhanced chemical vapor deposition. Phys Status Solidi A, 218, 2100076(2021).

    [23] E Chikoidze, D J Rogers, F H Teherani et al. Puzzling robust 2D metallic conductivity in undoped β-Ga2O3 thin films. Mater Today Phys, 8, 10(2019).

    [24] K Ghosh, U Singisetti. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement. J Mater Res, 32, 4142(2017).

    [25] X Hou, X Zhao, Y Zhang et al. High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering. Adv Mater, 34, e2106923(2022).

    [26] T Zhang, D G Guan, N T Liu et al. Room temperature fabrication and post-annealing treatment of amorphous Ga2O3 photodetectors for deep-ultraviolet light detection. Appl Phys Express, 15, 022007(2022).

    [27] X Q Xiang, L H Li, C Chen et al. Unintentional doping effect in Si-doped MOCVD β-Ga2O3 films: Shallow donor states. Sci China Mater, 66, 748(2023).

    [28] Y Qin, L H Li, X L Zhao et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics, 7, 812(2020).

    [29] A Waseem, Z J Ren, H C Huang et al. A review of recent progress in β-Ga2O3 epitaxial growth: Effect of substrate orientation and precursors in metal–organic chemical vapor deposition. Phys Status Solidi A, 2200616(2022).

    [30] N T Liu, T Zhang, L Chen et al. Fast-response amorphous Ga2O3 solar-blind ultraviolet photodetectors tuned by a polar AlN template. IEEE Electron Device Lett, 43, 68(2022).

    [31] R Cuscó, N Domènech-Amador, T Hatakeyama et al. Lattice dynamics of a mist-chemical vapor deposition-grown corundum-like Ga2O3 single crystal. J Appl Phys, 117, 185706(2015).

    [32] T C Ma, X H Chen, F F Ren et al. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique. J Semicond, 40, 012804(2019).

    [33] P Mazzolini, A Falkenstein, C Wouters et al. Substrate-orientation dependence of β-Ga2O3 (100), (010), (001), and (-201) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE). APL Mater, 8, 011107(2020).

    [34] C C Yen, T M Huang, P W Chen et al. Role of interfacial oxide in the preferred orientation of Ga2O3 on Si for deep ultraviolet photodetectors. ACS Omega, 6, 29149(2021).

    [35] B R Tak, S Dewan, A Goyal et al. Point defects induced work function modulation of β-Ga2O3. Appl Surf Sci, 465, 973(2019).

    [36] A Miller, E Abrahams. Impurity conduction at low concentrations. Phys Rev, 120, 745(1960).

    [37] Z Hajnal, J Miró, G Kiss et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3. J Appl Phys, 86, 3792(1999).

    [38] J Y Zhang, J L Shi, D C Qi et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater, 8, 020906(2020).

    Wei Wang, Shudong Hu, Zilong Wang, Kaisen Liu, Jinfu Zhang, Simiao Wu, Yuxia Yang, Ning Xia, Wenrui Zhang, Jichun Ye. Exploring heteroepitaxial growth and electrical properties of α-Ga2O3 films on differently oriented sapphire substrates[J]. Journal of Semiconductors, 2023, 44(6): 062802
    Download Citation