• Laser & Optoelectronics Progress
  • Vol. 58, Issue 18, 1811003 (2021)
Runnan Zhang1、2、3, Zewei Cai1、2、3、**, Jiasong Sun1、2、3, Linpeng Lu1、2、3, Haitao Guan1、2、3, Yan Hu1、2、3, Bowen Wang1、2、3, Ning Zhou1、2、3, Qian Chen3、***, and Chao Zuo1、2、3、*
Author Affiliations
  • 1Smart Computational Imaging Laboratory, School of Electronic and Optical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China;
  • 2Smart Computational Imaging Research Institute, Nanjing University of Science & Technology, Nanjing, Jiangsu 210019, China;
  • 3Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China;
  • show less
    DOI: 10.3788/LOP202158.1811003 Cite this Article Set citation alerts
    Runnan Zhang, Zewei Cai, Jiasong Sun, Linpeng Lu, Haitao Guan, Yan Hu, Bowen Wang, Ning Zhou, Qian Chen, Chao Zuo. Optical-Field Coherence Measurement and Its Applications in Computational Imaging[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811003 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Abramovici A, Althouse W E, Drever R W et al. LIGO: the laser interferometer gravitational-wave observatory[J]. Science, 256, 325-333(1992).

    [3] Abbott B P, Abbott R, Abbott T et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).

    [4] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 24, 291-293(1999).

    [5] Schnars U, Jüptner W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 13, R85-R101(2002).

    [6] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 38, 6994-7001(1999).

    [7] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Applied Optics, 39, 4070-4075(2000).

    [8] Schnars U, Falldorf C, Watson J et al. Digital holography[M]. //Digital holography and wavefront sensing, 39-68(2014).

    [9] Roddier F, Roddier C, Roddier N. Curvature sensing: a new wavefront sensing method[J]. Proceedings of SPIE, 0976, 203-209(1988).

    [10] Roddier F. Curvature sensing and compensation: a new concept in adaptive optics[J]. Applied Optics, 27, 1223-1225(1988).

    [11] Roddier F. Wavefront sensing and the irradiance transport equation[J]. Applied Optics, 29, 1402-1403(1990).

    [12] Roddier N A. Algorithms for wavefront reconstruction out of curvature sensing data[J]. Proceedings of SPIE, 1542, 120-129(1991).

    [13] Giewekemeyer K, Thibault P, Kalbfleisch S et al. Quantitative biological imaging by ptychographic X-ray diffraction microscopy[J]. Proceedings of the National Academy of Sciences of USA, 107, 529-534(2010).

    [14] Maiden A M, Morrison G R, Kaulich B et al. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination[J]. Nature Communications, 4, 1669(2013).

    [15] Thibault P, Elser V, Jacobsen C et al. Reconstruction of a yeast cell from X-ray diffraction data[J]. Acta Crystallographica Section A Foundations of Crystallography, 62, 248-261(2006).

    [16] Rodenburg J M, Hurst A C, Cullis A G et al. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 98, 034801(2007).

    [17] Rodenburg J M, Hurst A C, Cullis A G. Transmission microscopy without lenses for objects of unlimited size[J]. Ultramicroscopy, 107, 227-231(2007).

    [18] Hüe F, Rodenburg J M, Maiden A M et al. Extended ptychography in the transmission electron microscope: possibilities and limitations[J]. Ultramicroscopy, 111, 1117-1123(2011).

    [19] Hüe F, Rodenburg J M, Maiden A M et al. Wave-front phase retrieval in transmission electron microscopy via ptychography[J]. Physical Review B, 82, 121415(2010).

    [20] Allman B E, McMahon P J, Nugent K A et al. Phase radiography with neutrons[J]. Nature, 408, 158-159(2000).

    [21] McMahon P J, Allman B E, Jacobson D L et al. Quantitative phase radiography with polychromatic neutrons[J]. Physical Review Letters, 91, 145502(2003).

    [22] Young T. An account of some cases of the production of colours, not hitherto described[J]. Philosophical Transactions of the Royal Society of London, 92, 387-397(1802).

    [23] Young T I. Experiments and calculations relative to physical optics[J]. Philosophical Transactions of the Royal Society of London, 94, 1-16(1804).

    [24] Crease R P. The most beautiful experiment[J]. Physics World, 15, 19-20(2002).

    [25] van Cittert P H. Die wahrscheinliche schwingungsverteilung in einer von einer lichtquelle direkt Oder mittels einer linse beleuchteten ebene[J]. Physica, 1, 201-210(1934).

    [26] Zernike F. The concept of degree of coherence and its application to optical problems[J]. Physica, 5, 785-795(1938).

    [27] Wolf E. Optics in terms of observable quantities[J]. Il Nuovo Cimento, 12, 884-888(1954).

    [28] Hopkins H H. Applications of coherence theory in microscopy and interferometry[J]. Journal of the Optical Society of America, 47, 508-526(1957).

    [29] Hopkins H H, Thomson G P. The concept of partial coherence in optics[J]. Proceedings of the Royal Society of London Series: A Mathematical and Physical Sciences, 208, 263-277(1951).

    [30] Hopkins H H, Mott N F. On the diffraction theory of optical images[J]. Proceedings of the Royal Society of London Series: A Mathematical and Physical Sciences, 217, 408-432(1953).

    [31] Mandel L. Concept of cross-spectral purity in coherence theory[J]. Journal of the Optical Society of America, 51, 1342-1350(1961).

    [32] Mandel L, Wolf E. Spectral coherence and the concept of cross-spectral purity[J]. Journal of the Optical Society of America, 66, 529-535(1976).

    [33] Wolf E. New theory of partial coherence in the space-frequency domain part II: steady-state fields and higher-order correlations[J]. Journal of the Optical Society of America A, 3, 76-85(1986).

    [34] Mandel L, Wolf E. Optical coherence and quantum optics[M](1995).

    [35] Gori F, Santarsiero M, Vicalvi S et al. Beam coherence-polarization matrix[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 7, 941-951(1998).

    [36] Gori F. Matrix treatment for partially polarized, partially coherent beams[J]. Optics Letters, 23, 241-243(1998).

    [37] Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Physics Letters A, 312, 263-267(2003).

    [38] Testorf M E, Hennelly B M, Ojeda-Castañeda J. Phase-space optics: fundamentals and applications[M](2010).

    [39] Wigner E P. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 40, 749-759(1932).

    [40] Dolin L S. Beam description of weakly-inhomogeneous wave fields[EB/OL]. [2021-07-13]. https://www.researchgate.net/publication/230607442_Beam_description_of_weakly-inhomogeneous_wave_fields

    [41] Walther A. Radiometry and coherence[J]. Journal of the Optical Society of America, 58, 1256-1259(1968).

    [42] Walther A. Radiometry and coherence[J]. Journal of the Optical Society of America, 63, 1622-1623(1973).

    [43] Walther A. Propagation of the generalized radiance through lenses[J]. Journal of the Optical Society of America, 68, 1606-1610(1978).

    [44] Bastiaans M J. A frequency-domain treatment of partial coherence[J]. Optica Acta: International Journal of Optics, 24, 261-274(1977).

    [45] Bastiaans M J. The Wigner distribution function applied to optical signals and systems[J]. Optics Communications, 25, 26-30(1978).

    [46] Bastiaans M J. The Wigner distribution function and Hamilton’s characteristics of a geometric-optical system[J]. Optics Communications, 30, 321-326(1979).

    [47] Bastiaans M J. Transport equations for the Wigner distribution function[J]. Optica Acta: International Journal of Optics, 26, 1265-1272(1979).

    [48] Bastiaans M J. Wigner distribution function and its application to first-order optics[J]. Journal of the Optical Society of America, 69, 1710-1716(1979).

    [49] Bastiaans M J. Transport equations for the Wigner distribution function in an inhomogeneous and dispersive medium[J]. Optica Acta: International Journal of Optics, 26, 1333-1344(1979).

    [50] Bastiaans M J. The Wigner distribution function of partially coherent light[J]. Optica Acta: International Journal of Optics, 28, 1215-1224(1981).

    [51] Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. Journal of the Optical Society of America A, 3, 1227-1238(1986).

    [52] Zhang Z Y, Levoy M. Wigner distributions and how they relate to the light field[C]. //2009 IEEE International Conference on Computational Photography (ICCP), April 16-17, 2009, San Francisco, CA, USA., 1-10(2009).

    [53] Pu J X, Zhang H H, Nemoto S. Spectral shifts and spectral switches of partially coherent light passing through an aperture[J]. Optics Communications, 162, 57-63(1999).

    [54] Pu J X, Cai C, Nemoto S. Spectral anomalies in Young’s double-slit interference experiment[J]. Optics Express, 12, 5131-5139(2004).

    [55] Chen F N, Chen J J, Zhao Q et al. Properties of high order Bessel Gaussian beam propagation in non-Kolmogorov atmosphere turbulence[J]. Chinese Journal of Lasers, 39, 0913001(2012).

    [56] Chen Y R, Zhao Q. Experimental study on property of a laser radiation side-scattered by the spherical particles distributed randomly[J]. Acta Optica Sinica, 23, 1110-1114(2003).

    [57] Guo X Y, Li B J, Fan X H et al. Complex amplitude modulation of light fields based on dielectric metasurfaces and its applications[J]. Infrared and Laser Engineering, 49, 20201031(2020).

    [58] Guo X Y, Li P, Zhong J Z et al. Tying polarization-switchable optical vortex knots and links via holographic all-dielectric metasurfaces[J]. Laser & Photonics Reviews, 14, 1900366(2020).

    [59] Lu Y Q. Research progress of liquid crystal optics[J]. Optics & Optoelectronic Technology, 15, 9-12(2017).

    [60] Chen P, Xu R, Hu W et al. Beam shaping based on photopatterned liquid crystals[J]. Acta Optica Sinica, 36, 1026005(2016).

    [61] Yuan X C, Jia P, Lei T et al. Optical vortices and optical communication with orbital angular momentum[J]. Journal of Shenzhen University Science and Engineering, 31, 331-346(2014).

    [62] Lei T, Zhang M, Li Y R et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light: Science & Applications, 4, e257(2015).

    [63] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).

    [64] Chen J, Zhan Q W. Tailoring laser focal fields with vectorial optical fields[J]. Acta Optica Sinica, 39, 0126002(2019).

    [65] Li Z C, Liu W W, Cheng H et al. Manipulating optical waves based on artificial nanostructures[J]. Physics Experimentation, 39, 1-10, 14(2019).

    [66] Li J X, Chen S Q, Yang H F et al. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces[J]. Advanced Functional Materials, 25, 704-710(2015).

    [67] Cai Y J, Lu X H, Lin Q. Hollow Gaussian beams and their propagation properties[J]. Optics Letters, 28, 1084-1086(2003).

    [68] Cai Y J, He S L. Propagation of various dark hollow beams in a turbulent atmosphere[J]. Optics Express, 14, 1353-1367(2006).

    [69] Zhao C L, Cai Y J. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam[J]. Optics Letters, 36, 2251-2253(2011).

    [70] Lu X Y, Zhao C L, Cai Y J. Research progress on methods and applications for phase reconstruction under partially coherent illumination[J]. Chinese Journal of Lasers, 47, 0500016(2020).

    [71] Wan Y H, Man T L, Tao S Q. Imaging characteristics and research progress of incoherent holography[J]. Chinese Journal of Lasers, 41, 0209004(2014).

    [72] Fang L, Dai Q H. Computational light field imaging[J]. Acta Optica Sinica, 40, 0111001(2020).

    [73] Wu J M, Lu Z, Jiang D et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale[J]. Cell, 184, 3318-3332(2021).

    [74] Li H Y, Guo C L, Kim-Holzapfel D et al. Fast, volumetric live-cell imaging using high-resolution light-field microscopy[J]. Biomedical Optics Express, 10, 29-49(2019).

    [75] Zhang Z K, Bai L, Cong L et al. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy[J]. Nature Biotechnology, 39, 74-83(2021).

    [76] Cai Z W, Liu X L, Peng X et al. Structured light field 3D imaging[J]. Optics Express, 24, 20324-20334(2016).

    [77] Santarsiero M, Borghi R. Measuring spatial coherence by using a reversed-wavefront young interferometer[J]. Optics Letters, 31, 861-863(2006).

    [78] González A I, Mejía Y. Nonredundant array of apertures to measure the spatial coherence in two dimensions with only one interferogram[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 28, 1107-1113(2011).

    [79] Marks D L, Stack R A, Brady D J et al. Visible cone-beam tomography with a lensless interferometric camera[J]. Science, 284, 2164-2166(1999).

    [80] Iaconis C, Walmsley I A. Direct measurement of the two-point field correlation function[J]. Optics Letters, 21, 1783-1785(1996).

    [81] Itoh K, Ohtsuka Y. Fourier-transform spectral imaging: retrieval of source information from three-dimensional spatial coherence[J]. Journal of the Optical Society of America A, 3, 94-100(1986).

    [82] Mendlovic D, Shabtay G, Lohmann A W et al. Display of spatial coherence[J]. Optics Letters, 23, 1084-1086(1998).

    [83] Alonso M A. Diffraction of paraxial partially coherent fields by planar obstacles in the Wigner representation[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 26, 1588-1597(2009).

    [84] Cho S, Alonso M A, Brown T G. Measurement of spatial coherence through diffraction from a transparent mask with a phase discontinuity[J]. Optics Letters, 37, 2724-2726(2012).

    [85] Raymer M G, Beck M, McAlister D. Complex wave-field reconstruction using phase-space tomography[J]. Physical Review Letters, 72, 1137-1140(1994).

    [86] McAlister D F, Beck M, Clarke L et al. Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms[J]. Optics Letters, 20, 1181-1183(1995).

    [87] Nugent K A. Wave field determination using three-dimensional intensity information[J]. Physical Review Letters, 68, 2261-2264(1992).

    [88] Hazak G. Comment on “Wave field determination using three-dimensional intensity information”[J]. Physical Review Letters, 69, 2874(1992).

    [89] Gori F, Guattari G, Santarsiero M. Coherence and the spatial distribution of intensity[J]. Journal of the Optical Society of America A, 10, 673-679(1993).

    [90] Tran C Q, Peele A G, Paterson D et al. Phase space density measurement of interfering X-rays[J]. Journal of Electron Spectroscopy and Related Phenomena, 144/145/146/147, 947-951(2005).

    [91] Agarwal G S, Simon R. Reconstruction of the Wigner transform of a rotationally symmetric two-dimensional beam from the Wigner transform of the beam’s one-dimensional sample[J]. Optics Letters, 25, 1379-1381(2000).

    [92] Dragoman D. Can the Wigner transform of a two-dimensional rotationally symmetric beam be fully recovered from the Wigner transform of its one-dimensional approximation?[J]. Optics Letters, 25, 281-283(2000).

    [93] Tian L, Lee J, Oh S B et al. Experimental compressive phase space tomography[J]. Optics Express, 20, 8296-8308(2012).

    [94] Bartelt H O, Brenner K H, Lohmann A W. The Wigner distribution function and its optical production[J]. Optics Communications, 32, 32-38(1980).

    [95] Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams[J]. Nature Photonics, 6, 474-479(2012).

    [96] Tian L, Zhang Z Y, Petruccelli J C et al. Wigner function measurement using a lenslet array[J]. Optics Express, 21, 10511-10525(2013).

    [97] Stoklasa B, Motka L, Rehacek J et al. Wavefront sensing reveals optical coherence[J]. Nature Communications, 5, 3275(2014).

    [98] Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen[J]. Zt. Instrumentenkd, 20, 17-27(1990).

    [99] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 17, S573-S577(2001).

    [100] Shack R V, Platt B. Production and use of a lenticular Hartmann screen[J]. Journal of the Optical Society of America, 656(1971).

    [101] Ng R, Levoy M, Bredif M et al. Light field photography with a hand-held plenoptic camera[EB/OL]. [2021-07-13]. https://hal.archives-ouvertes.fr/hal-02551481/

    [102] Zhang Z, Chen Z, Rehman S et al. Factored form descent: a practical algorithm for coherence retrieval[J]. Optics Express, 21, 5759-5780(2013).

    [103] Bao C L, Barbastathis G, Ji H et al. Coherence retrieval using trace regularization[J]. SIAM Journal on Imaging Sciences, 11, 679-706(2018).

    [104] Liang C K, Lin T H, Wong B Y et al. Programmable aperture photography: multiplexed light field acquisition[C]. //ACM SIGGRAPH 2008 papers on-SIGGRAPH’08, August 11-15, 2008, Los Angeles, California, 10(2008).

    [105] Levin A, Fergus R, Durand F et al. Image and depth from a conventional camera with a coded aperture[J]. ACM Transactions on Graphics, 26, 70(2007).

    [106] Zuo C, Sun J S, Feng S J et al. Programmable aperture microscopy: a computational method for multi-modal phase contrast and light field imaging[J]. Optics and Lasers in Engineering, 80, 24-31(2016).

    [107] Antipa N, Necula S, Ng R et al. Single-shot diffuser-encoded light field imaging[C]. //2016 IEEE International Conference on Computational Photography (ICCP), May 13-15, 2016, Evanston, IL, USA., 1-11(2016).

    [108] Park J H, Lee S K, Jo N Y et al. Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays[J]. Optics Express, 22, 25444-25454(2014).

    [109] Liu C, Qiu J, Jiang M. Light field reconstruction from projection modeling of focal stack[J]. Optics Express, 25, 11377-11388(2017).

    [110] Wilburn B, Joshi N, Vaish V et al. High performance imaging using large camera arrays[C]. //ACM SIGGRAPH 2005 Papers on-SIGGRAPH’05, July 31-August 4, 2005, Los Angeles, California., 765-776(2005).

    [111] Levoy M, Ng R, Adams A et al. Light field microscopy[C]. //ACM SIGGRAPH 2006 Papers on - SIGGRAPH’06, July 30-August 3, 2006, Boston, Massachusetts., 924-934(2006).

    [112] Broxton M, Grosenick L, Yang S et al. Wave optics theory and 3-D deconvolution for the light field microscope[J]. Optics Express, 21, 25418-25439(2013).

    [113] Guo C L, Liu W H, Hua X W et al. Fourier light-field microscopy[J]. Optics Express, 27, 25573-25594(2019).

    [114] Rosen J, Brooker G. Fresnel incoherent correlation holography (FINCH): a review of research[J]. Advanced Optical Technologies, 1, 151-169(2012).

    [115] Vijayakumar A, Kashter Y, Kelner R et al. Coded aperture correlation holography-a new type of incoherent digital holograms[J]. Optics Express, 24, 12430-12441(2016).

    [116] Kumar M, Vijayakumar A, Rosen J. Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses[J]. Scientific Reports, 7, 11555(2017).

    [117] Vijayakumar A, Rosen J. Interferenceless coded aperture correlation holography: a new technique for recording incoherent digital holograms without two-wave interference[J]. Optics Express, 25, 13883-13896(2017).

    [118] Rosen J, Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy[J]. Nature Photonics, 2, 190-195(2008).

    [119] Kim M K. Full color natural light holographic camera[J]. Optics Express, 21, 9636-9642(2013).

    [120] Rai M R, Vijayakumar A, Rosen J. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH)[J]. Optics Express, 26, 18143-18154(2018).

    [121] Wolf E. New theory of partial coherence in the space-frequency domain part I: spectra and cross spectra of steady-state sources[J]. Journal of the Optical Society of America, 72, 343-351(1982).

    [122] Zernike F. Diffraction and optical image formation[J]. Proceedings of the Physical Society, 61, 158-164(1948).

    [123] Dragoman D. Phase-space interferences as the source of negative values of the Wigner distribution function[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 17, 2481-2485(2000).

    [124] Gershun A. The light field[J]. Journal of Mathematics and Physics, 18, 51-151(1939).

    [125] Adelson E H, Bergen J R. The plenoptic function and the elements of early vision[J]. Computational Models of Visual Processing, 3-20(1991).

    [126] Levoy M, Hanrahan P. Light field rendering[C]. //Proceedings of the 23rd annual conference on Computer graphics and interactive techniques-SIGGRAPH’96, August 4-9, 1996, New Orleans, LA, USA., 31-42(1996).

    [127] Camahort E, Lerios A, Fussell D. Uniformly sampled light fields[M]. //Drettakis G, Max N. Rendering techniques’98, 117-130(1998).

    [128] Zuo C, Chen Q, Tian L et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective[J]. Optics and Lasers in Engineering, 71, 20-32(2015).

    [129] Ng R. Fourier slice photography[J]. ACM Transactions on Graphics, 24, 735-744(2005).

    [130] Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[M](2013).

    [131] Kirchhoff G. Zur theorie der lichtstrahlen[J]. Annalen Der Physik, 254, 663-695(1883).

    [132] Goodman J W. Introduction to Fourier optics[M](2005).

    [133] Teague M R. Deterministic phase retrieval: a Green’s function solution[J]. Journal of the Optical Society of America, 73, 1434-1441(1983).

    [134] Streibl N. Phase imaging by the transport equation of intensity[J]. Optics Communications, 49, 6-10(1984).

    [135] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Optics Express, 21, 14430-14441(2013).

    [136] Gori F. Directionality and spatial coherence[J]. Optica Acta: International Journal of Optics, 27, 1025-1034(1980).

    [137] Wolf E. New spectral representation of random sources and of the partially coherent fields that they generate[J]. Optics Communications, 38, 3-6(1981).

    [138] Starikov A, Wolf E. Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields[J]. Journal of the Optical Society of America, 72, 923-928(1982).

    [139] Kemper B, Langehanenberg P, von Bally G. Digital holographic microscopy[J]. Optik & Photonik, 2, 41-44(2007).

    [140] Kim M K. Digital holographic microscopy[M]. //Digital holographic microscopy. Springer series in materials science, 162, 149-190(2011).

    [141] Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection[J]. Applied Optics, 47, A52-A61(2008).

    [142] Marquet P, Rappaz B, Magistretti P J et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Optics Letters, 30, 468-470(2005).

    [143] Ragazzoni R. Pupil plane wavefront sensing with an oscillating prism[J]. Journal of Modern Optics, 43, 289-293(1996).

    [144] Esposito S, Riccardi A. Pyramid wavefront sensor behavior in partial correction adaptive optic systems[J]. Astronomy & Astrophysics, 369, L9-L12(2001).

    [145] Ragazzoni R, Diolaiti E, Vernet E. A pyramid wavefront sensor with no dynamic modulation[J]. Optics Communications, 208, 51-60(2002).

    [146] Neil M A A, Booth M J, Wilson T. New modal wave-front sensor: a theoretical analysis[J]. Journal of the Optical Society of America A, 17, 1098-1107(2000).

    [147] Booth M J. Wave front sensor-less adaptive optics: a model-based approach using sphere packings[J]. Optics Express, 14, 1339-1352(2006).

    [148] Schäfer B, Mann K. Determination of beam parameters and coherence properties of laser radiation by use of an extended Hartmann-Shack wave-front sensor[J]. Applied Optics, 41, 2809-2817(2002).

    [149] Schäfer B, Lübbecke M, Mann K. Hartmann-Shack wave front measurements for real time determination of laser beam propagation parameters[J]. Review of Scientific Instruments, 77, 053103(2006).

    [150] Pfund J, Lindlein N, Schwider J et al. Absolute sphericity measurement: a comparative study of the use of interferometry and a Shack-Hartmann sensor[J]. Optics Letters, 23, 742-744(1998).

    [151] Greivenkamp J E, Smith D G, Gappinger R O et al. Optical testing using Shack-Hartmann wavefront sensors[J]. Proceedings of SPIE, 4416, 260-263(2001).

    [152] Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. Journal of the Optical Society of America A, 19, 1794-1802(2002).

    [153] Dayton D, Gonglewski J, Pierson B et al. Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor[J]. Optics Letters, 17, 1737-1739(1992).

    [154] Booth M J. Adaptive optics in microscopy[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2829-2843(2007).

    [155] Cha J W, Ballesta J, So P T C. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy[J]. Journal of Biomedical Optics, 15, 046022(2010).

    [156] Liang J, Grimm B, Goelz S et al. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 11, 1949-1957(1994).

    [157] Moreno-Barriuso E, Navarro R. Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye[J]. Journal of the Optical Society of America A, 17, 974-985(2000).

    [158] Kohnen T, Koch D D. Cataract and refractive surgery[M](2006).

    [159] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-250(1972).

    [160] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 199, 65-75(2001).

    [161] Bauschke H H, Combettes P L, Luke D R. Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization[J]. Journal of the Optical Society of America A, 19, 1334-1345(2002).

    [162] Bauschke H H, Combettes P L, Luke D R. Hybrid projection-reflection method for phase retrieval[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 20, 1025-1034(2003).

    [163] Elser V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 20, 40-55(2003).

    [164] Luke D R. Relaxed averaged alternating reflections for diffraction imaging[J]. Inverse Problems, 21, 37-50(2005).

    [165] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).

    [166] Faulkner H M L, Rodenburg J M. Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy[J]. Ultramicroscopy, 103, 153-164(2005).

    [167] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [168] Zuo C, Li J J, Sun J S et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 135, 106187(2020).

    [169] Hamilton D K, Sheppard C J R. Differential phase contrast in scanning optical microscopy[J]. Journal of Microscopy, 133, 27-39(1984).

    [170] Hamilton D K, Sheppard C J R, Wilson T. Improved imaging of phase gradients in scanning optical microscopy[J]. Journal of Microscopy, 135, 275-286(1984).

    [171] Zheng G A, Shen C, Jiang S W et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 3, 207-223(2021).

    [172] Zuo C, Chen Q, Sun J S et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese Journal of Lasers, 43, 0609002(2016).

    [173] Sun J S, Zhang Y Z, Chen Q et al. Fourier ptychographic microscopy: theory, advances, and applications[J]. Acta Optica Sinica, 36, 1011005(2016).

    [174] Fan Y, Chen Q, Sun J S et al. Review of the development of differential phase contrast microscopy[J]. Infrared and Laser Engineering, 48, 0603014(2019).

    [175] Pan A, Zuo C, Yao B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine[J]. Reports on Progress in Physics. Physical Society, 83, 096101(2020).

    [176] Pan X C, Liu C, Tao H et al. Phase imaging based on Ptychography and progress on related key techniques[J]. Acta Optica Sinica, 40, 0111010(2020).

    [177] Mejía Y, González A I. Measuring spatial coherence by using a mask with multiple apertures[J]. Optics Communications, 273, 428-434(2007).

    [178] Tu J H, Tamura S. Wave field determination using tomography of the ambiguity function[J]. Physical Review E, 55, 1946-1949(1997).

    [179] Dragoman D, Dragoman M, Brenner K H. Tomographic amplitude and phase recovery of vertical-cavity surface-emitting lasers by use of the ambiguity function[J]. Optics Letters, 27, 1519-1521(2002).

    [180] Dragoman D, Dragoman M, Brenner K H. Amplitude and phase recovery of rotationally symmetric beams[J]. Applied Optics, 41, 5512-5518(2002).

    [181] Liu X, Brenner K H. Reconstruction of two-dimensional complex amplitudes from intensity measurements[J]. Optics Communications, 225, 19-30(2003).

    [182] Testorf M E, Semichaevsky A. Phase retrieval and phase-space tomography from incomplete data sets[J]. Proceedings of SPIE, 5562, 38-49(2004).

    [183] Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform[J]. Journal of the Optical Society of America A, 10, 2181-2186(1993).

    [184] Lohmann A W, Soffer B H. Relationships between the Radon-Wigner and fractional Fourier transforms[J]. Journal of the Optical Society of America A, 11, 1798-1801(1994).

    [185] Zhang Z Y, Barbastathis G. Regularizers for coherence retrieval and their physical interpretation[C]. //Computational Optical Sensing and Imaging 2014, June 22-26, 2014, Kohala Coast, Hawaii, United States, CW4C, 4(2014).

    [186] Banaszek K, Wódkiewicz K. Direct probing of quantum phase space by photon counting[J]. Physical Review Letters, 76, 4344-4347(1996).

    [187] Chapman H N. Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution[J]. Ultramicroscopy, 66, 153-172(1996).

    [188] Yang J C, Everett M, Buehler C et al. A real-time distributed light field camera[EB/OL]. [2021-07-13]. http://csbio.unc.edu/mcmillan/pubs/EGRW02_yang.pdf

    [189] Lin X, Wu J M, Zheng G A et al. Camera array based light field microscopy[J]. Biomedical Optics Express, 6, 3179-3189(2015).

    [190] Perwass C, Wietzke L. Single lens 3D-camera with extended depth-of-field[J]. Proceedings of SPIE, 8291, 829108(2012).

    [191] Veeraraghavan A, Raskar R, Agrawal A et al. Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing[C]. //ACM SIGGRAPH 2007 papers on-SIGGRAPH’07, August 5-9, 2007, San Diego, California, 69(2007).

    [192] Marwah K, Wetzstein G, Bando Y et al. Compressive light field photography using overcomplete dictionaries and optimized projections[J]. ACM Transactions on Graphics, 32, 1-12(2013).

    [193] Chen N, Ren Z, Lam E Y. High-resolution Fourier hologram synthesis from photographic images through computing the light field[J]. Applied Optics, 55, 1751-1756(2016).

    [194] Yin X W, Wang G J, Li W T et al. Iteratively reconstructing 4D light fields from focal stacks[J]. Applied Optics, 55, 8457-8463(2016).

    [195] Chen N, Zuo C, Lam E et al. 3D imaging based on depth measurement technologies[J]. Sensors, 18, 3711(2018).

    [196] Chen N, Zuo C, Lee B. 3D imaging based on depth measurement[J]. Infrared and Laser Engineering, 48, 0603013(2019).

    [197] Orth A, Crozier K B. Light field moment imaging[J]. Optics Letters, 38, 2666-2668(2013).

    [198] Zuo C, Chen Q, Asundi A. Light field moment imaging: comment[J]. Optics Letters, 39, 654(2014).

    [199] Liu J D, Xu T F, Yue W R et al. Light-field moment microscopy with noise reduction[J]. Optics Express, 23, 29154-29162(2015).

    [200] Levoy M, Zhang Z. McDowall I. Recording and controlling the 4D light field in a microscope using microlens arrays[J]. Journal of Microscopy, 235, 144-162(2009).

    [201] Barone-Nugent E D, Barty A, Nugent K A. Quantitative phase-amplitude microscopy I: optical microscopy[J]. Journal of Microscopy, 206, 194-203(2002).

    [202] Jenkins M H, Gaylord T K. Quantitative phase microscopy via optimized inversion of the phase optical transfer function[J]. Applied Optics, 54, 8566-8579(2015).

    [203] Chakraborty T, Petruccelli J C. Source diversity for transport of intensity phase imaging[J]. Optics Express, 25, 9122-9137(2017).

    [204] Kou S S, Waller L, Barbastathis G et al. Quantitative phase restoration by direct inversion using the optical transfer function[J]. Optics Letters, 36, 2671-2673(2011).

    [205] Sung Y, Choi W, Fang-Yen C et al. Optical diffraction tomography for high resolution live cell imaging[J]. Optics Express, 17, 266-277(2009).

    [206] Gureyev T E, Davis T J, Pogany A et al. Optical phase retrieval by use of first Born- and Rytov-type approximations[J]. Applied Optics, 43, 2418-2430(2004).

    [207] Lu L P, Fan Y, Sun J S et al. Accurate quantitative phase imaging by the transport of intensity equation: a mixed-transfer-function approach[J]. Optics Letters, 46, 1740-1743(2021).

    [208] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [209] Takeda M, Wang W, Duan Z H et al. Coherence holography[J]. Optics Express, 13, 9629-9635(2005).

    [210] Naik D N, Ezawa T, Miyamoto Y et al. 3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift[J]. Optics Express, 17, 10633-10641(2009).

    [211] Naik D N, Ezawa T, Miyamoto Y et al. Real-time coherence holography[J]. Optics Express, 18, 13782-13787(2010).

    [212] Naik D N, Ezawa T, Miyamoto Y et al. Phase-shift coherence holography[J]. Optics Letters, 35, 1728-1730(2010).

    [213] Naik D N, Singh R K, Ezawa T et al. Photon correlation holography[J]. Optics Express, 19, 1408-1421(2011).

    [214] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Optics Letters, 32, 912-914(2007).

    [215] Naik D N, Pedrini G, Osten W. Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell[J]. Optics Express, 21, 3990-3995(2013).

    [216] Naik D N, Pedrini G, Takeda M et al. Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer[J]. Optics Letters, 39, 1857-1860(2014).

    [217] Kim S G, Lee B, Kim E S. Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram[J]. Applied Optics, 36, 4784-4791(1997).

    [218] Pedrini G, Li H, Faridian A et al. Digital holography of self-luminous objects by using a Mach-Zehnder setup[J]. Optics Letters, 37, 713-715(2012).

    [219] Kang S, Jeong S, Choi W et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves[J]. Nature Photonics, 9, 253-258(2015).

    [220] van der Horst J, Trull A K, Kalkman J. Deep-tissue label-free quantitative optical tomography[J]. Optica, 7, 1682-1689(2020).

    [221] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [222] Wang L, Ho P P, Liu C et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate[J]. Science, 253, 769-771(1991).

    [223] Tyson R K. Principles of adaptive optics[M](2015).

    [224] Webb R H. Confocal optical microscopy[J]. Reports on Progress in Physics, 59, 427-471(1996).

    [225] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).

    [226] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 6, 657-661(2012).

    [227] Papadopoulos I N, Jouhanneau J S, Poulet J F et al. Scattering compensation by focus scanning holographic aberration probing (F-SHARP)[J]. Nature Photonics, 11, 116-123(2017).

    [228] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [229] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 23, 12189-12206(2015).

    [230] Mosk A P, Lagendijk A, Lerosey G et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 6, 283-292(2012).

    [231] Popoff S M, Lerosey G, Fink M et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).

    [232] Katz O, Ramaz F, Gigan S et al. Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix[J]. Nature Communications, 10, 717(2019).

    [233] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

    [234] Barbastathis G, Ozcan A, Situ G H. On the use of deep learning for computational imaging[J]. Optica, 6, 921-943(2019).

    [235] Mahalati R N, Gu R Y, Kahn J M. Resolution limits for imaging through multi-mode fiber[J]. Optics Express, 21, 1656-1668(2013).

    [236] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 61, 2328-2331(1988).

    [237] Bertolotti J, van Putten E G, Blum C et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 491, 232-234(2012).

    [238] Katz O, Heidmann P, Fink M et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 8, 784-790(2014).

    [239] Zhu L, Shao X P. Research progress on scattering imaging technology[J]. Acta Optica Sinica, 40, 0111005(2020).

    [240] Chen Z Y, Chen L, Fan W R et al. Progress on scattering imaging technologies based on correlation holography[J]. Laser & Optoelectronics Progress, 58, 0200001(2021).

    [241] Kendrick R L, Duncan A, Ogden C et al. Segmented planar imaging detector for EO reconnaissance[C]. //Computational Optical Sensing and Imaging 2013, June 23-27, 2013, Arlington, Virginia, United States, CM4C, 1(2013).

    [242] Kendrick R L, Duncan A, Ogden C et al. Flat-panel space-based space surveillance sensor[EB/OL]. [2021-07-13]. https://amostech.com/TechnicalPapers/2013/Space-Based_Assets/KENDRICK.pdf.

    [243] Katz B, Rosen J. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements[J]. Optics Express, 18, 962-972(2010).

    [244] Charrière F, Marian A, Montfort F et al. Cell refractive index tomography by digital holographic microscopy[J]. Optics Letters, 31, 178-180(2006).

    [245] Buzug T M. Computed tomography[M]. //Kramme R, Hoffmann K P, Pozos R S. Springer handbook of medical technology. Springer handbooks, 311-342(2011).

    [246] Choi W, Fang-Yen C, Badizadegan K et al. Tomographic phase microscopy[J]. Nature Methods, 4, 717-719(2007).

    [247] Li J J, Matlock A C, Li Y Z et al. High-speed in vitro intensity diffraction tomography[J]. Advanced Photonics, 1, 066004(2019).

    [248] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A, 1, 612-619(1984).

    [249] Tuy H K. An inversion formula for cone-beam reconstruction[J]. SIAM Journal on Applied Mathematics, 43, 546-552(1983).

    [250] Prevedel R, Yoon Y G, Hoffmann M et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy[J]. Nature Methods, 11, 727-730(2014).

    [251] Pégard N C, Liu H Y, Antipa N et al. Compressive light-field microscopy for 3D neural activity recording[J]. Optica, 3, 517-524(2016).

    [252] Skocek O, Nöbauer T, Weilguny L et al. High-speed volumetric imaging of neuronal activity in freely moving rodents[J]. Nature Methods, 15, 429-432(2018).

    [253] Brooker G, Siegel N, Rosen J et al. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens[J]. Optics Letters, 38, 5264-5267(2013).

    [254] Siegel N, Brooker G. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy[J]. Optics Express, 22, 22298-22307(2014).

    [255] Siegel N, Lupashin V, Storrie B et al. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers[J]. Nature Photonics, 10, 802-808(2016).

    [256] Kelner R, Katz B, Rosen J. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system[J]. Optica, 1, 70-74(2014).

    [257] Kelner R, Rosen J. Parallel-mode scanning optical sectioning using digital Fresnel holography with three-wave interference phase-shifting[J]. Optics Express, 24, 2200-2214(2016).

    [258] Xiao X G, Wang Z H, Sun C D et al. A range focusing measurement technology based on light field photography[J]. Acta Photonica Sinica, 37, 2539-2543(2008).

    [259] Vaish V, Garg G, Talvala E et al. Synthetic aperture focusing using a shear-warp factorization of the viewing transform[C]. //2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-Workshops, September 21-23, 2005, San Diego, CA, USA., 129(2005).

    [260] Rosen J, Brooker G. Fluorescence incoherent color holography[J]. Optics Express, 15, 2244-2250(2007).

    [261] Tran C Q, Peele A G, Roberts A et al. Synchrotron beam coherence: a spatially resolved measurement[J]. Optics Letters, 30, 204-206(2005).

    [262] Tran C Q, Peele A G, Roberts A et al. X-ray imaging: a generalized approach using phase-space tomography[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 22, 1691-1700(2005).

    [263] Tran C Q, Williams G J, Roberts A et al. Experimental measurement of the four-dimensional coherence function for an undulator X-ray source[J]. Physical Review Letters, 98, 224801(2007).

    [264] Cámara A, Alieva T, Rodrigo J A et al. Phase space tomography reconstruction of the Wigner distribution for optical beams separable in cartesian coordinates[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 26, 1301-1306(2009).

    [265] Cámara A, Alieva T, Rodrigo J A et al. Phase-space tomography with a programmable Radon-Wigner display[J]. Optics Letters, 36, 2441-2443(2011).

    [266] Cámara A, Alieva T, Castro I et al. Phase-space tomography for characterization of rotationally symmetric beams[J]. Journal of Optics, 16, 015705(2014).

    [267] Cámara A, Rodrigo J A, Alieva T. Optical coherenscopy based on phase-space tomography[J]. Optics Express, 21, 13169-13183(2013).

    [268] Pan S H, Ma J, Zhu R H et al. Real-time complex amplitude reconstruction method for beam quality M2 factor measurement[J]. Optics Express, 25, 20142-20155(2017).

    [269] Whitehead L W, Williams G J, Quiney H M et al. Diffractive imaging using partially coherent X rays[J]. Physical Review Letters, 103, 243902(2009).

    [270] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 494, 68-71(2013).

    [271] Dong S Y, Shiradkar R, Nanda P et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 5, 1757-1767(2014).

    [272] Tian L, Li X, Ramchandran K et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope[J]. Biomedical Optics Express, 5, 2376-2389(2014).

    [273] Sun J S, Chen Q, Zhang Y Z et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 24, 15765-15781(2016).

    [274] Katz B, Rosen J. Could safe concept be applied for designing a new synthetic aperture telescope?[J]. Optics Express, 19, 4924-4936(2011).

    [275] Kashter Y, Rosen J. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture[J]. Optics Express, 22, 20551-20565(2014).

    [276] Kashter Y, Vijayakumar A, Miyamoto Y et al. Enhanced resolution using Fresnel incoherent correlation holography with structured illumination[J]. Optics Letters, 41, 1558-1561(2016).

    [277] Su T H, Liu G Y, Badham K E et al. Interferometric imaging using Si3N4 photonic integrated circuits for a spider imager[J]. Optics Express, 26, 12801-12812(2018).

    [278] Mertz L, Young N O. Fresnel transformations of images[EB/OL]. [2021-07-13]. https://people.csail.mit.edu/bkph/courses/papers/Coded_Aperture/Fresnel_Transform_Mertz_Young.pdf

    [279] Shimano T, Nakamura Y, Tajima K et al. Lensless light-field imaging with Fresnel zone aperture: quasi-coherent coding[J]. Applied Optics, 57, 2841-2850(2018).

    [280] Tajima K, Shimano T, Nakamura Y et al. Lensless light-field imaging with multi-phased Fresnel zone aperture[C]. //2017 IEEE International Conference on Computational Photography (ICCP), May 12-14, 2017, Stanford, CA, USA., 1-7(2017).

    [281] Sao M Y, Nakamura Y, Tajima K et al. Lensless close-up imaging with Fresnel zone aperture[J]. Japanese Journal of Applied Physics, 57, 09SB05(2018).

    [282] Wu J C, Zhang H, Zhang W H et al. Single-shot lensless imaging with Fresnel zone aperture and incoherent illumination[J]. Light, Science & Applications, 9, 53(2020).

    [283] Wolf E. Invariance of the spectrum of light on propagation[J]. Physical Review Letters, 56, 1370-1372(1986).

    [284] Rao L Z, Qu B, Chen Z Y et al. The spectral changes of partially coherent light diffracted by a slit[J]. Acta Photonica Sinica, 36, 467-470(2007).

    [285] Siegman A E. New developments in laser resonators[J]. Proceedings of SPIE, 1224, 2-14(1990).

    [286] Rydberg C, Bengtsson J. Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements[J]. Optics Express, 15, 13613-13623(2007).

    Runnan Zhang, Zewei Cai, Jiasong Sun, Linpeng Lu, Haitao Guan, Yan Hu, Bowen Wang, Ning Zhou, Qian Chen, Chao Zuo. Optical-Field Coherence Measurement and Its Applications in Computational Imaging[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811003
    Download Citation