• Chinese Journal of Lasers
  • Vol. 45, Issue 6, 0602003 (2018)
Hongyu Zhu, Pulin Nie*, Zhuguo Li, and Jian Huang
Author Affiliations
  • Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering,Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/CJL201845.0602003 Cite this Article Set citation alerts
    Hongyu Zhu, Pulin Nie, Zhuguo Li, Jian Huang. Microstructures and Properties of Joints in Ultra-Narrow-Gap Laser Wire Welding of P92 Steel and Inconel 625 Alloy Thick Plates[J]. Chinese Journal of Lasers, 2018, 45(6): 0602003 Copy Citation Text show less
    References

    [1] Huo W H, Li J, Yan X. Effects of coolant flow rates on cooling performance of the intermediate pressure stages for an ultra-supercritical steam turbine[J]. Applied Thermal Engineering, 62, 723-731(2014). http://www.sciencedirect.com/science/article/pii/S1359431113006467

    [2] Nowak G, Rusin A. Shape and operation optimisation of a supercritical steam turbine rotor[J]. Energy Conversion and Management, 74, 417-425(2013). http://www.researchgate.net/publication/277450712_Shape_and_operation_optimisation_of_a_supercritical_steam_turbine_rotor

    [3] Ampornrat P, Gupta G, Was G S et al. Tensile and stress corrosion cracking behavior of ferritic-martensitic steels in supercritical water[J]. Journal of Nuclear Materials, 395, 30-36(2009). http://www.sciencedirect.com/science/article/pii/S002231150900796X

    [4] Li J B, Shang S, Sun Y Z et al. Parameter nondimensionalization in laser direct metal deposition formation of Inconel 625 and its influence on single track geometric morphology[J]. Chinese Journal of Lasers, 44, 0302010(2017).

    [5] Francis J A. Bhadeshia H K D H, Withers P J. Welding residual stresses in ferritic power plant steels[J]. Materials Science and Technology, 23, 1009-1020(2007).

    [6] Yeni C, Kocak M. Fracture analysis of laser beam welded superalloys Inconel 718 and 625 using the FITNET procedure[J]. International Journal of Pressure Vessels and Piping, 85, 532-539(2008). http://www.sciencedirect.com/science/article/pii/S0308016108000252

    [7] Skouras A. Flewitt P E J, Peel M, et al. Residual stress measurements in a P92 steel-In625 superalloy metal weldment in the as-welded and after post weld heat treated conditions[J]. International Journal of Pressure Vessels and Piping, 123, 10-18(2014). http://www.sciencedirect.com/science/article/pii/S0308016114000805

    [8] Wiednig C, Lochbichler C, Enziger N et al. Dissimilar electron beam welding of nickel base alloy 625 and 9%Cr steel[J]. Procedia Engineering, 86, 184-194(2014).

    [9] Wang B P, Zhao Y, Huang J. Investigation on microstructure of thick plate stainless steel joint welded by multi-pass laser welding with filler wire[J]. Chinese Journal of Lasers, 40, 0203008(2013).

    [10] Zhang G W, Xiao R S. Microstructure and mechanical property of 60 mm-thick 304 stainless steel joint by ultra-narrow gap fiber laser beam welding[J]. Chinese Journal of Lasers, 41, 0803007(2014).

    [11] Zhao Y, Wang Q Z, Huang J et al. Microstructures and properties of ultra-narrow-gap multi-pass welded joint of 50 mm turbine rotor steel by laser welding with filler wire[J]. Chinese Journal of Lasers, 42, 0203007(2015).

    [12] Zhang Y W, Zhang M L, Sun Z Y et al. Microstructure and properties of 50 mm thick SA508Gr.3Cl.2 steel welding joints by ultra-narrow-gap laser welding with filler wire[J]. Chinese Journal of Lasers, 44, 1102006(2017).

    [13] Zhao L, Jing H Y, Xiu J J et al. Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint[J]. Materials and Design, 57, 736-743(2014). http://www.sciencedirect.com/science/article/pii/S0261306913012028

    [14] Laha K, Chandravathi K S. Rao K B S, et al. An assessment of creep deformation and fracture behavior of 2.25Cr-1Mo similar and dissimilar weld joints[J]. Metallurgical and Materials Transactions A, 32, 115-124(2001). http://link.springer.com/article/10.1007/s11661-001-0107-9

    [15] Laha K, Chandravathi K S, Parameswaran P et al. Characterization of microstructures across the heat-affected zone of the modified 9Cr-1Mo weld joint to understand its role in promoting type IV cracking[J]. Metallurgical and Materials Transactions A, 38, 58-68(2007). http://link.springer.com/article/10.1007/s11661-006-9050-0

    [16] Divya M, Das C R, Albert S K et al. Influence of welding process on type IV cracking behavior of P91 steel[J]. Materials Science and Engineering A, 613, 148-158(2014). http://www.sciencedirect.com/science/article/pii/S0921509314008156

    [17] Shanmugarajan B, Padmanabham G, Kumar H et al. Autogenous laser welding investigations on modified 9Cr-1Mo(P91) steel[J]. Science and Technology of Welding and Joining, 16, 528-534(2011). http://www.tandfonline.com/doi/abs/10.1179/1362171811Y.0000000035

    [18] Arivazhagan B, Kamaraj M. A study on factors influencing toughness of basic flux-cored weld of modified 9Cr-1Mo steel[J]. Journal of Materials Engineering and Performance, 20, 1188-1195(2011). http://link.springer.com/article/10.1007/s11665-010-9757-3

    [19] Nie P L, Ojo O A, Li Z G. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy[J]. Acta Materialia, 77, 85-95(2014). http://www.sciencedirect.com/science/article/pii/S1359645414003875

    [20] Li G, Huang J, Wu Y X. An investigation on microstructure and properties of dissimilar welded Inconel 625 and SUS 304 using high-power CO2 laser[J]. International Journal of Advanced Manufacturing Technology, 76, 1203-1214(2015). http://link.springer.com/article/10.1007/s00170-014-6349-7

    [21] Xu F J, Lü Y H, Liu Y X et al. Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process[J]. Journal of Materials Science and Technology, 29, 480-488(2013). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=clkj201305017&dbname=CJFD&dbcode=CJFQ

    [22] Zhao L, Jing H Y, Xu L Y et al. Analysis of creep crack growth behavior of P92 steel welded joint by experiment and numerical simulation[J]. Materials Science and Engineering A, 558, 119-128(2012). http://www.sciencedirect.com/science/article/pii/S0921509312010672

    [23] Chen G, Wang G Z, Zhang J W et al. Effects of initial crack positions and load levels on creep failure behavior in P92 steel welded joint[J]. Engineering Failure Analysis, 47, 56-66(2015). http://www.sciencedirect.com/science/article/pii/S1350630714003057

    [24] Wang X, Pan Q G, Ren Y Y et al. Microstructure and type IV cracking behavior of HAZ in P92 steel weldment[J]. Materials Science and Engineering A, 552, 493-501(2012). http://www.sciencedirect.com/science/article/pii/S0921509312007824

    [25] Moon J, Lee C H, Lee T H et al. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel[J]. Journal of Nuclear Materials, 455, 81-85(2014). http://www.sciencedirect.com/science/article/pii/S0022311514002670

    [26] Wei Y H, Qiao S F, Lu F G et al. Failure transition mechanism in creep rupture of modified casting 9Cr-1.5Mo-1Co welded joint[J]. Materials and Design, 97, 268-278(2016). http://www.researchgate.net/publication/296622889_Failure_transition_mechanism_in_creep_rupture_of_modified_casting_9Cr-15Mo-1Co_welded_joint

    Hongyu Zhu, Pulin Nie, Zhuguo Li, Jian Huang. Microstructures and Properties of Joints in Ultra-Narrow-Gap Laser Wire Welding of P92 Steel and Inconel 625 Alloy Thick Plates[J]. Chinese Journal of Lasers, 2018, 45(6): 0602003
    Download Citation