[1] Xiao D, Wan S P, Yin X et al. Pulse acquisition system based on curved optical fiber sensor head[J]. Laser & Optoelectronics Progress, 58, 0506006(2021).
[2] Yang X W, Luo B B, Wu D C et al. Wearable respiratory sensor based on sandwich multimode fiber interferometer[J]. Acta Optica Sinica, 43, 0306002(2023).
[3] Fang S S, Wu X Q, Zhang G et al. High-sensitivity fiber optic temperature and strain sensors based on the vernier effect[J]. Chinese Journal of Lasers, 48, 0106004(2021).
[4] Qi Y, McAlpine M C. Nanotechnology-enabled flexible and biocompatible energy harvesting[J]. Energy & Environmental Science, 3, 1275-1285(2010).
[5] Shi Q F, Zhang Z X, Chen T et al. Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch[J]. Nano Energy, 62, 355-366(2019).
[6] Yao L Q, Zhou Z, Zhang Z et al. Dyeing-inspired sustainable and low-cost modified cellulose-based TENG for energy harvesting and sensing[J]. ACS Sustainable Chemistry & Engineering, 10, 3909-3919(2022).
[7] Peng X, Dong K, Ye C Y et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators[J]. Science Advances, 6, eaba9624(2020).
[8] Zhao G R, Zhang Y W, Shi N et al. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing[J]. Nano Energy, 59, 302-310(2019).
[9] Peng Y, Wang Z S, Shao Y F et al. A review of recent development of wearable triboelectric nanogenerators aiming at human clothing for energy conversion[J]. Polymers, 15, 508(2023).
[10] Qiu Q, Zhu M M, Li Z L et al. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics[J]. Nano Energy, 58, 750-758(2019).
[11] Sala de Medeiros M, Chanci D, Moreno C et al. Waterproof, breathable, and antibacterial self-powered e-textiles based on omniphobic triboelectric nanogenerators[J]. Advanced Functional Materials, 29, 1904350(2019).
[12] Chen Y, Ling Y L, Yin R. Fiber/yarn-based triboelectric nanogenerators (TENGs): fabrication strategy, structure, and application[J]. Sensors, 22, 9716(2022).
[13] Xiong J Q, Cui P, Chen X L et al. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting[J]. Nature Communications, 9, 4280(2018).
[14] Busolo T, Szewczyk P K, Nair M et al. Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications[J]. ACS Applied Materials & Interfaces, 13, 16876-16886(2021).
[15] Dong S S, Xu F, Sheng Y L et al. Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources[J]. Nano Energy, 78, 105327(2020).
[16] Liu J M, Gu L, Cui N Y et al. Core-shell fiber-based 2D woven triboelectric nanogenerator for effective motion energy harvesting[J]. Nanoscale Research Letters, 14, 1-10(2019).
[17] Cui X J, Wu H G, Wang R. Fibrous triboelectric nanogenerators: fabrication, integration, and application[J]. Journal of Materials Chemistry A, 10, 15881-15905(2022).
[18] Xiong Y, Luo L, Yang J H et al. Scalable spinning, winding, and knitting graphene textile TENG for energy harvesting and human motion recognition[J]. Nano Energy, 107, 108137(2023).
[19] Wu R H, Liu S, Lin Z F et al. Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system[J]. Advanced Energy Materials, 12, 2201288(2022).
[20] Walden R, Aazem I, Babu A et al. Textile-triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices[J]. Chemical Engineering Journal, 451, 138741(2023).
[21] Zhang D Z, Wang D Y, Xu Z Y et al. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators[J]. Coordination Chemistry Reviews, 427, 213597(2021).
[22] Ginnaram S, Chen Y T, Lai Y C. Solid-state intrinsically-superstretchable multifunctional nanogenerator fiber for biomechanical and ambient electromagnetic energy harvesting and self-powered sensing[J]. Nano Energy, 95, 107035(2022).
[23] Ma L Y, Wu R H, Liu S et al. A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue[J]. Advanced Materials, 32, 2003897(2020).
[24] Ma L Y, Zhou M J, Wu R H et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing[J]. ACS Nano, 14, 4716-4726(2020).
[25] Yu A F, Wang W, Li Z B et al. Large-scale smart carpet for self-powered fall detection[J]. Advanced Materials Technologies, 5, 1900978(2020).
[26] Yu A F, Pu X, Wen R M et al. Core-shell-yarn-based triboelectric nanogenerator textiles as power cloths[J]. ACS Nano, 11, 12764-12771(2017).
[27] Zhang D W, Yang W F, Gong W et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on Fermat spirals[J]. Advanced Materials, 33, 2100782(2021).
[28] Lou M N, Abdalla I, Zhu M M et al. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring[J]. ACS Applied Materials & Interfaces, 12, 19965-19973(2020).
[29] Ye C, Dong S J, Ren J et al. Ultrastable and high-performance silk energy harvesting textiles[J]. Nano-Micro Letters, 12, 1-15(2019).
[30] Gao Y Y, Li Z H, Xu B G et al. Scalable core-spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing[J]. Nano Energy, 91, 106672(2022).
[31] Zhang C, Zhang L, Bao B et al. Customizing triboelectric nanogenerator on everyday clothes by screen-printing technology for biomechanical energy harvesting and human-interactive applications[J]. Advanced Materials Technologies, 8, 2201138(2023).
[32] Ko W B, Choi D S, Lee C H et al. Hierarchically nanostructured 1D conductive bundle yarn-based triboelectric nanogenerators[J]. Advanced Materials, 29, 1704434(2017).
[33] Zhao T M, Li J L, Zeng H et al. Self-powered wearable sensing-textiles for real-time detecting environmental atmosphere and body motion based on surface-triboelectric coupling effect[J]. Nanotechnology, 29, 405504(2018).
[34] Chen C Y, Chen L J, Wu Z Y et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors[J]. Materials Today, 32, 84-93(2020).
[35] Ning C, Dong K, Cheng R W et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing[J]. Advanced Functional Materials, 31, 2006679(2021).
[36] Yang Y Q, Sun N, Wen Z et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics[J]. ACS Nano, 12, 2027-2034(2018).
[37] Jing T T, Xu B G, Yang Y J. Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles[J]. Nano Energy, 84, 105867(2021).
[38] Zheng L J, Zhu M M, Wu B H et al. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing[J]. Science Advances, 7, eabg4041(2021).
[39] Hasan M M, Bin Sadeque M S, Albasar I et al. Scalable fabrication of MXene-PVDF nanocomposite triboelectric fibers via thermal drawing[J]. Small, 19, 2206107(2023).
[40] Wang Z, Wu T T, Wang Z X et al. Designer patterned functional fibers via direct imprinting in thermal drawing[J]. Nature Communications, 11, 3842(2020).
[41] Sun M M, Ge Y X, Shen L W et al. Optical fiber fabry-perot humidity sensor based on arc discharge optimization[J]. Acta Optica Sinica, 42, 1006002(2022).
[42] Zhang X J, Tang S S, Ma R et al. High-performance multimodal smart textile for artificial sensation and health monitoring[J]. Nano Energy, 103, 107778(2022).
[43] Somkuwar V U, Pragya A, Kumar B. Structurally engineered textile-based triboelectric nanogenerator for energy harvesting application[J]. Journal of Materials Science, 55, 5177-5189(2020).
[44] Niu L, Peng X, Chen L J et al. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection[J]. Nano Energy, 97, 107168(2022).
[45] Chen Y, Chen E D, Wang Z H et al. Flexible, durable, and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction[J]. Nano Energy, 104, 107929(2022).
[46] Dong K, Peng X A, An J E et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing[J]. Nature Communications, 11, 2868(2020).