• Infrared and Laser Engineering
  • Vol. 52, Issue 12, 20230241 (2023)
Hongyi Wang1,2,3, Wengang Tao1,2,4, Yifan Lu1,2,3, Yonggang Zhang1,2..., Songlei Huang1,2 and Jiaxiong Fang1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4ShanghaiTech University, Shanghai 201210, China
  • show less
    DOI: 10.3788/IRLA20230241 Cite this Article
    Hongyi Wang, Wengang Tao, Yifan Lu, Yonggang Zhang, Songlei Huang, Jiaxiong Fang. Study of low-power readout circuit based on a programmable windowing IP core[J]. Infrared and Laser Engineering, 2023, 52(12): 20230241 Copy Citation Text show less
    The system architecture of IRFPA ROIC with programmable windowing IP core
    Fig. 1. The system architecture of IRFPA ROIC with programmable windowing IP core
    Analog signal chain
    Fig. 2. Analog signal chain
    (a) Pixel unit circuit structure; (b) 2×2 pixel array layout
    Fig. 3. (a) Pixel unit circuit structure; (b) 2×2 pixel array layout
    (a) Power consumption control module and push-pull output structure; (b) The op-amp structure of push-pull output stage
    Fig. 4. (a) Power consumption control module and push-pull output structure; (b) The op-amp structure of push-pull output stage
    (a) Operating timing of the column-level output buffers; (b) Timing diagram for column-level time-selection technology
    Fig. 5. (a) Operating timing of the column-level output buffers; (b) Timing diagram for column-level time-selection technology
    Top-level logic for the programmable windowing digital IP core
    Fig. 6. Top-level logic for the programmable windowing digital IP core
    Arbitrary windowing function output simulation, readout area 8×8
    Fig. 7. Arbitrary windowing function output simulation, readout area 8×8
    The layout of programmable arbitrary windowing digital IP core
    Fig. 8. The layout of programmable arbitrary windowing digital IP core
    (a) The layout of 640×512 scale programmable arbitrary windowing IRFPA ROIC; (b) Die photograph of ROIC chip
    Fig. 9. (a) The layout of 640×512 scale programmable arbitrary windowing IRFPA ROIC; (b) Die photograph of ROIC chip
    Test platform of the IRFPA ROIC chip and the FPA module
    Fig. 10. Test platform of the IRFPA ROIC chip and the FPA module
    Verification of programmable arbitrary windowing function. (a) Full-frame imaging; (b) Top left windowing 384×256; (c) Center windowing 256×256; (d) Bottom right windowing overflow test 128×128
    Fig. 11. Verification of programmable arbitrary windowing function. (a) Full-frame imaging; (b) Top left windowing 384×256; (c) Center windowing 256×256; (d) Bottom right windowing overflow test 128×128
    ParameterMeasurement
    Array format640×512
    Technology0.18 μm
    Pixel pitch15 μm
    Readout modeITR & IWR
    Input stageCTIA
    Read rate15 MHz
    Power consumption80 mW
    Frame rate (typical windowing size) 180 Hz (640×512) 3 kHz (128×128) 50 kHz (32×32)
    FPAs dynamic range>70 dB
    Output swing2.5 V
    Chip area12 mm×10.4 mm
    Table 1. The main performance parameters of the programmable arbitrary windowing IRFPA assembly
    Hongyi Wang, Wengang Tao, Yifan Lu, Yonggang Zhang, Songlei Huang, Jiaxiong Fang. Study of low-power readout circuit based on a programmable windowing IP core[J]. Infrared and Laser Engineering, 2023, 52(12): 20230241
    Download Citation