• Photonics Research
  • Vol. 9, Issue 4, 548 (2021)
Marco Seminara1、2, Marco Meucci2, Fabio Tarani3, Cristiano Riminesi3, and Jacopo Catani1、2、*
Author Affiliations
  • 1European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
  • 2National Institute of Optics-CNR (CNR-INO), Sesto Fiorentino, Italy
  • 3Institute of Heritage Science-CNR (CNR-ISPC), Sesto Fiorentino, Italy
  • show less
    DOI: 10.1364/PRJ.414394 Cite this Article Set citation alerts
    Marco Seminara, Marco Meucci, Fabio Tarani, Cristiano Riminesi, Jacopo Catani. Characterization of a VLC system in real museum scenario using diffusive LED lighting of artworks[J]. Photonics Research, 2021, 9(4): 548 Copy Citation Text show less
    References

    [1] S. Nakamura, T. Mukai, M. Senoh. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett., 64, 1687-1689(1994).

    [2] T. Komine, M. Nakagawa. Fundamental analysis for visible-light communication system using led lights. IEEE Trans. Consum. Electron., 50, 100-107(2004).

    [3] S. Alfattani. Review of LiFi technology and its future applications. J. Opt. Commun., 42, 121-132(2018).

    [4] N. Chi, H. Haas, M. Kavehrad, T. D. C. Little, X. Huang. Visible light communications: demand factors, benefits and opportunities. IEEE Wireless Commun., 22, 5-7(2015).

    [5] S. Al-Sarawi, M. Anbar, K. Alieyan, M. Alzubaidi. Internet of things (IoT) communication protocols: Review. 8th International Conference on Information Technology (ICIT), 685-690(2017).

    [6] S. S. I. Samuel. A review of connectivity challenges in IoT-smart home. 3rd MEC International Conference on Big Data and Smart City (ICBDSC), 1-4(2016).

    [7] H. Lan, I. Tseng, H. Kao, Y. Lin, G. Lin, C. Wu. 752-MHz modulation bandwidth of high-speed blue micro light-emitting diodes. IEEE J. Quantum Electron., 54, 3300106(2018).

    [8] D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, D. O’Brien. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photon. Technol. Lett., 26, 637-640(2014).

    [9] X. Huang, Z. Wang, J. Shi, Y. Wang, N. Chi. 1.6  Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. Opt. Express, 23, 22034-22042(2015).

    [10] A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photon. J., 4, 1465-1473(2012).

    [11] J. Grubor, S. Randel, K. Langer, J. W. Walewski. Bandwidth-efficient indoor optical wireless communications with white light-emitting diodes. 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, 165-169(2008).

    [12] J. Grubor, S. C. J. Lee, K. Langer, T. Koonen, J. W. Walewski. Wireless high-speed data transmission with phosphorescent white-light LEDs. 33rd European Conference and Exhibition of Optical Communication, 1-2(2007).

    [13] H. Ma, L. Lampe, S. Hranilovic. Hybrid visible light and power line communication for indoor multiuser downlink. J. Opt. Commun. Netw., 9, 635-647(2017).

    [14] H. Haas, L. Yin, Y. Wang, C. Chen. What is LiFi?. J. Lightwave Technol., 34, 1533-1544(2016).

    [15] B. Masini, A. Bazzi, A. Zanella. Vehicular visible light networks for urban mobile crowd sensing. Sensors, 18, 1177(2018).

    [16] S. Ayub, S. Kariyawasam, M. Honary, B. Honary. A practical approach of VLC architecture for smart city. Loughborough Antennas Propagation Conference (LAPC), 106-111(2013).

    [17] J. Cosmas, B. Meunier, K. Ali, N. Jawad, H. Meng, F. Goutagneux, E. Legale, M. Satta, P. Jay, X. Zhang, C. Huang, J. Garcia, M. Negru, Y. Zhang, T. Kourtis, C. Koumaras, C. Sakkas, L. Huang, R. Zetik, K. Cabaj, W. Mazurczyk, M. E. Cakan, A. Kapovits. 5G internet of radio light services for musée de la carte à jouer. Global LIFI Congress (GLC), 1-6(2018).

    [18] L. Gökrem, M. Durgun, Y. Durgun. Indoor location control with visible light communication. 3rd International Conference on Advanced Information and Communications Technologies (AICT), 314-316(2019).

    [19] S. Udtewar, D. Dsouza, A. Aghamkar. Visible light information system for museums. Int. J. Sci. Res. Publ., 9, 8602(2019).

    [20] M. Kim, T. Suh. A low-cost surveillance and information system for museum using visible light communication. IEEE Sens. J., 19, 1533-1541(2019).

    [21] S. Caputo, L. Mucchi, F. Cataliotti, M. Seminara, T. Nawaz, J. Catani. Measurement-based VLC channel characterization for I2V communications in a real urban scenario. Veh. Commun., 28, 100305(2020).

    [22] M. Seminara, T. Nawaz, S. Caputo, L. Mucchi, J. Catani. Characterization of field of view in visible light communication systems for intelligent transportation systems. IEEE Photon. J., 12, 7903816(2020).

    [23] S. Rajagopal, R. D. Roberts, S. Lim. IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun. Mag., 50, 72-82(2012).

    [24] . IEEE standard for local and metropolitan area networks, part 15.7: Short-range wireless optical communication using visible light(2018).

    [25] T. Nawaz, M. Seminara, S. Caputo, L. Mucchi, F. S. Cataliotti, J. Catani. IEEE 802.15.7-compliant ultra-low latency relaying VLC system for safety-critical ITS. IEEE Trans. Veh. Technol., 68, 12040-12051(2019).

    [26] H. Stern, S. Mahmoud, L. Stern. Communication Systems: Analysis and Design(2004).

    [27] L. Renfu. Light Scattering Technology for Food Property, Quality and Safety Assessment(2016).

    [28] S. Kim. Adaptive FEC codes suitable for variable dimming values in visible light communication. IEEE Photon. Technol. Lett., 27, 967-969(2015).

    [29] S. Kim, S. Jung. Novel FEC coding scheme for dimmable visible light communication based on the modified Reed–Muller codes. IEEE Photon. Technol. Lett., 23, 1514-1516(2011).

    [30] S. H. Lee, J. K. Kwon. Turbo code-based error correction scheme for dimmable visible light communication systems. IEEE Photon. Technol. Lett., 24, 1463-1465(2012).

    [31] L. Feng, R. Q. Hu, J. Wang, P. Xu, Y. Qian. Applying VLC in 5G networks: architectures and key technologies. IEEE Netw., 30, 77-83(2016).

    Marco Seminara, Marco Meucci, Fabio Tarani, Cristiano Riminesi, Jacopo Catani. Characterization of a VLC system in real museum scenario using diffusive LED lighting of artworks[J]. Photonics Research, 2021, 9(4): 548
    Download Citation