• Infrared and Laser Engineering
  • Vol. 51, Issue 4, 20210942 (2022)
Yu Zhu1, Shihan Yan2、3、*, Ziyi Zang2、4, Shengxing Song1, Jie Wang2、4, Zhanqiang Ru1, Hongliang Cui2、4, and Helun Song1、*
Author Affiliations
  • 1Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • 2Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
  • 3Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
  • 4College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China
  • show less
    DOI: 10.3788/IRLA20210942 Cite this Article
    Yu Zhu, Shihan Yan, Ziyi Zang, Shengxing Song, Jie Wang, Zhanqiang Ru, Hongliang Cui, Helun Song. Application of terahertz mapping in high throughput measurement of the electrical conductance of Cu alloy thin films (Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 20210942 Copy Citation Text show less
    References

    [1] A Stein, S W Keller, T E Mallouk. Turning down the heat: Design and mechanism in solid-state synthesis. Science, 259, 1558-1564(1993).

    [2] X D Xiang, X Sun, G Briceño, et al. A combinatorial approach to materials discovery. Science, 268, 1738-1740(1995).

    [3] S Barcelo, S S Mao. High throughput optical characterization of alloy hydrogenation. International Journal of Hydrogen Energy, 13, 7228-7231(2010).

    [4] H Koinuma, I Takeuchi. Combinatorial solid-state chemistry of inorganic materials. Nature Mater, 3, 429-438(2004).

    [5] Yexin Jiang, Huafen Lou, Haofeng Xie, et al. Development status and prospects of advanced copper alloy. Strategic Study of CAE, 22, 84-92(2020).

    [6] D H Petersen. Electrical characterization of InGaAs ultra-shallow junctions. Journal of Vacuum Science & Technology B, 28, C1C41(2010).

    [7] T Clarysse, D Vanhaeren, I Hoflijk, et al. Characterization of electrically active dopant profiles with the spreading resistance probe. Materials Science and Engineering:R, 47, 123-206(2004).

    [8] V A Sandovskii, V V Dyakin, M S Dudarev. A procedure for measuring and validating samples of electrical conductivity. Meas Tech, 48, 925-933(2005).

    [9] D H Petersen. Review of electrical characterization of ultra-shallow junctions with micro four-point probes. Journal of Vacuum Science & Technology B, 28, C1C27(2010).

    [10] B Ferguson, X C Zhang. Materials for terahertz science and technology. Nature Materials, 1, 26-33(2002).

    [11] N Laman, D Grischkowsky. Terahertz conductivity of thin metal films. Appl Phys Lett, 93, 051105(2008).

    [12] J D Buron, D H Petersen, P Bøggild, et al. Graphene conductance uniformity mapping. Nano Lett, 12, 5074-5081(2012).

    [13] J D Buron, F Pizzocchero, P Bøggild, et al. Graphene mobility mapping. Scientific Reports, 5, 12305(2015).

    [14] J Lloyd-Hughes, Tae-In Jeon. A review of the terahertz conductivity of bulk and nano-materials. J Infrared Milli Terahertz Waves, 33, 871-925(2012).

    [15] Lantao Guo, Kaijun Mu, Chao Deng, et al. Terahertz spectroscopy and imaging. Infrared and Laser Engineering, 42, 51-56(2013).

    [16] S H Yan, D S Wei, M J Tang, et al. Determination of critical micelle concentrations of surfactants by terahertz time-domain spectroscopy. IEEE Transactions on Terahertz Science and Technology, 6, 532-540(2016).

    [17] Pawlak B J, Jones K S, Felch S B, et al. Materials Research Society Symposium Proceedings Vol, 912: Doping engineering f device fabrication[M]. New Yk: Cambridge University Press, 2006: 197202.

    [18] Zaoxia Li, Shihan Yan, Ziyi Zang, et al. Single cell imaging with near-field terahertz scanning microscopy. Cell Proliferation, 53, e12788(2020).

    [19] M P Kirley, J H Booske. Terahertz conductivity of copper surfaces. IEEE Transcations on Terahertz Science and Technology, 5, 1012-1020(2015).

    Yu Zhu, Shihan Yan, Ziyi Zang, Shengxing Song, Jie Wang, Zhanqiang Ru, Hongliang Cui, Helun Song. Application of terahertz mapping in high throughput measurement of the electrical conductance of Cu alloy thin films (Invited)[J]. Infrared and Laser Engineering, 2022, 51(4): 20210942
    Download Citation