• Acta Optica Sinica
  • Vol. 44, Issue 15, 1513019 (2024)
Tao Wang1,2, Qinghai Song1,2, and Ke Xu1,2,*
Author Affiliations
  • 1School of Integrated Circuits, Harbin Institute of Technology, Shenzhen 518055, Guangdong , China
  • 2Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Shenzhen 518055, Guangdong , China
  • show less
    DOI: 10.3788/AOS240865 Cite this Article Set citation alerts
    Tao Wang, Qinghai Song, Ke Xu. Research Progress on Integrated Optical Meta-Waveguide Based on Inverse Design (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513019 Copy Citation Text show less
    References

    [1] Li A, Yao C H, Xia J F et al. Advances in cost-effective integrated spectrometers[J]. Light: Science & Applications, 11, 174(2022).

    [2] Pan M Y, Fu Y F, Zheng M J et al. Dielectric metalens for miniaturized imaging systems: progress and challenges[J]. Light: Science & Applications, 11, 195(2022).

    [3] Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 24, 4600-4615(2006).

    [4] Soref R. The past, present, and future of silicon photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 1678-1687(2006).

    [5] Uematsu T, Ishizaka Y, Kawaguchi Y et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission[J]. Journal of Lightwave Technology, 30, 2421-2426(2012).

    [6] Sun Y, Xiong Y L, Ye W N. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler[J]. Optics Letters, 41, 3743-3746(2016).

    [7] Dai D X, Wang J, He S L. Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects[J]. Progress In Electromagnetics Research, 143, 773-819(2013).

    [8] Oner B B, Üstün K, Kurt H et al. Large bandwidth mode order converter by differential waveguides[J]. Optics Express, 23, 3186-3195(2015).

    [9] Xu H N, Shi Y C. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers[J]. Optics Letters, 41, 5381-5384(2016).

    [10] Zheng S, Long Y, Gao D S et al. Chip-scale reconfigurable optical full-field manipulation: enabling a compact grooming photonic signal processor[J]. ACS Photonics, 7, 1235-1245(2020).

    [11] Molesky S, Lin Z, Piggott A Y et al. Inverse design in nanophotonics[J]. Nature Photonics, 12, 659-670(2018).

    [12] So S, Badloe T, Noh J et al. Deep learning enabled inverse design in nanophotonics[J]. Nanophotonics, 9, 474(2020).

    [13] Cheben P, Halir R, Schmid J H et al. Subwavelength integrated photonics[J]. Nature, 560, 565-572(2018).

    [14] Sun L, Zhang Y, He Y et al. Subwavelength structured silicon waveguides and photonic devices[J]. Nanophotonics, 9, 1321-1340(2020).

    [15] Halir R, Ortega-Moñux A, Benedikovic D et al. Subwavelength-grating metamaterial structures for silicon photonic devices[J]. Proceedings of the IEEE, 106, 2144-2157(2018).

    [16] Zheludev N I, Kivshar Y S. From metamaterials to metadevices[J]. Nature Materials, 11, 917-924(2012).

    [17] Lu J, Vučković J. Nanophotonic computational design[J]. Optics Express, 21, 13351-13367(2013).

    [18] Shen B, Wang P, Polson R et al. Ultra-high-efficiency metamaterial polarizer[J]. Optica, 1, 356-360(2014).

    [19] Piggott A Y, Lu J, Lagoudakis K G et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer[J]. Nature Photonics, 9, 374-377(2015).

    [20] Huang J, Yang J B, Chen D B et al. Implementation of on-chip multi-channel focusing wavelength demultiplexer with regularized digital metamaterials[J]. Nanophotonics, 9, 159-166(2020).

    [21] Ma H S, Huang J, Zhang K W et al. Ultra-compact and efficient 1×2 mode converters based on rotatable direct-binary-search algorithm[J]. Optics Express, 28, 17010-17019(2020).

    [22] Mohammadi Estakhri N, Edwards B, Engheta N. Inverse-designed metastructures that solve equations[J]. Science, 363, 1333-1338(2019).

    [23] Zhang Z M, Liu Y J, Wang Z et al. Folded digital meta-lenses for on-chip spectrometer[J]. Nano Letters, 23, 3459-3466(2023).

    [24] Lucas E, Yu S P, Briles T C et al. Tailoring microcombs with inverse-designed, meta-dispersion microresonators[J]. Nature Photonics, 17, 943-950(2023).

    [25] Tan Q Z, Qian C, Chen H S. Inverse-designed metamaterials for on-chip combinational optical logic circuit[J]. Progress In Electromagnetics Research, 176, 55-65(2023).

    [26] Liu Y, Shi Y Y, Wang Z J et al. On-chip integrated metasystem with inverse-design wavelength demultiplexing for augmented reality[J]. ACS Photonics, 10, 1268-1274(2023).

    [27] Yu Z J, Cui H R, Sun X K. Genetically optimized on-chip wideband ultracompact reflectors and Fabry-Pérot cavities[J]. Photonics Research, 5, B15-B19(2017).

    [28] Yu Z J, Cui H R, Sun X K. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint[J]. Optics Letters, 42, 3093-3096(2017).

    [29] Mak J C C, Sideris C, Jeong J et al. Binary particle swarm optimized 2×2 power splitters in a standard foundry silicon photonic platform[J]. Optics Letters, 41, 3868-3871(2016).

    [30] Lu Q C, Wei W, Yan X et al. Particle swarm optimized ultra-compact polarization beam splitter on silicon-on-insulator[J]. Photonics and Nanostructures-Fundamentals and Applications, 32, 19-23(2018).

    [31] Shen B, Wang P, Polson R et al. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint[J]. Nature Photonics, 9, 378-382(2015).

    [32] Chang W J, Lu L, Ren X S et al. Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction[J]. Optics Express, 26, 8162-8170(2018).

    [33] Xie Z W, Lei T, Li F et al. Ultra-broadband on-chip twisted light emitter for optical communications[J]. Light: Science & Applications, 7, 18001(2018).

    [34] Frandsen L H, Sigmund O. Inverse design engineering of all-silicon polarization beam splitters[J]. Proceedings of SPIE, 9756, 97560Y(2016).

    [35] Frellsen L F, Ding Y H, Sigmund O et al. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides[J]. Optics Express, 24, 16866-16873(2016).

    [36] Su L, Piggott A Y, Sapra N V et al. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer[J]. ACS Photonics, 5, 301-305(2018).

    [37] Lu J, Vučković J. Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes[J]. Optics Express, 20, 7221-7236(2012).

    [38] Callewaert F, Butun S, Li Z Y et al. Inverse design of an ultra-compact broadband optical diode based on asymmetric spatial mode conversion[J]. Scientific Reports, 6, 32577(2016).

    [39] Kao C Y, Osher S, Yablonovitch E. Maximizing band gaps in two-dimensional photonic crystals by using level set methods[J]. Applied Physics B, 81, 235-244(2005).

    [40] Piggott A Y, Petykiewicz J, Su L et al. Fabrication-constrained nanophotonic inverse design[J]. Scientific Reports, 7, 1786(2017).

    [41] Skarda J, Yang K Y, Vercruysse D et al. Inverse designed cavity-waveguide couplers[C], 5-10(2019).

    [42] Wang K Y, Ren X S, Chang W J et al. Inverse design of digital nanophotonic devices using the adjoint method[J]. Photonics Research, 8, 528-533(2020).

    [43] Liu Y J, Xu K, Wang S et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration[J]. Nature Communications, 10, 3263(2019).

    [44] Lalau-Keraly C M, Bhargava S, Miller O D et al. Adjoint shape optimization applied to electromagnetic design[J]. Optics Express, 21, 21693-21701(2013).

    [45] Son G, Han S, Park J et al. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits[J]. Nanophotonics, 7, 1845-1864(2018).

    [46] Keiser G[M]. Optical fiber communications(2000).

    [47] Huang W P. Coupled-mode theory for optical waveguides: an overview[J]. Journal of the Optical Society of America A, 11, 963-983(1994).

    [48] Michaels A, Yablonovitch E. Inverse design of near unity efficiency perfectly vertical grating couplers[J]. Optics Express, 26, 4766-4779(2018).

    [49] Wen X, Xu K, Song Q H. Design of a barcode-like waveguide nanostructure for efficient chip-fiber coupling[J]. Photonics Research, 4, 209-213(2016).

    [50] Su L, Trivedi R, Sapra N V et al. Fully-automated optimization of grating couplers[J]. Optics Express, 26, 4023-4034(2018).

    [51] Wang X F, Yu H, Huang Q K et al. Polarization-independent fiber-chip grating couplers optimized by the adaptive genetic algorithm[J]. Optics Letters, 46, 314-317(2021).

    [52] Tong Y Y, Zhou W, Wu X R et al. Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler[J]. IEEE Journal of Quantum Electronics, 56, 8400107(2020).

    [53] Zhou X T, Tsang H K. High efficiency multimode waveguide grating coupler for few-mode fibers[J]. IEEE Photonics Journal, 14, 6643405(2022).

    [54] Zhang Y, Yang S Y, Lim A E J et al. A compact and low loss Y-junction for submicron silicon waveguide[J]. Optics Express, 21, 1310-1316(2013).

    [55] Xie Y, Huang T, Ji Q et al. Design of an arbitrary ratio optical power splitter based on a discrete differential multiobjective evolutionary algorithm[J]. Applied Optics, 59, 1780-1785(2020).

    [56] Lu L, Liu D M, Zhou F Y et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures[J]. Optics Letters, 41, 5051-5054(2016).

    [57] Chang W J, Ren X S, Ao Y Q et al. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter[J]. Optics Express, 26, 24135-24144(2018).

    [58] Xie H C, Liu Y J, Wang Y H et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure[J]. IEEE Photonics Technology Letters, 32, 341-344(2020).

    [59] Piggott A Y, Ma E Y, Su L et al. Inverse-designed photonics for semiconductor foundries[J]. ACS Photonics, 7, 569-575(2020).

    [60] Xu J F, Liu Y J, Guo X Y et al. Inverse design of a dual-mode 3-dB optical power splitter with a 445 nm bandwidth[J]. Optics Express, 30, 26266-26274(2022).

    [61] Xu P F, Zhang Y F, Shao Z K et al. 5 μm2 compact waveguide crossing optimized by genetic algorithm[C], 10-13(5).

    [62] Yuan X G, Yang Y, Yan X et al. Ultra-compact multichannel optical waveguide crossings designed by a particle swarm optimized method[J]. Optics Communications, 503, 127458(2022).

    [63] Lu L, Zhang M M, Zhou F Y et al. Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect[J]. Optics Express, 25, 18355-18364(2017).

    [64] Liang H, Wang Q, Yuan X G et al. Topological inverse design of fabrication-constrained nanophotonic devices via an adaptive projection method[J]. Optics Letters, 47, 5401-5404(2022).

    [65] Shen B, Polson R, Menon R. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking[J]. Nature Communications, 7, 13126(2016).

    [66] Liu Z H, Liu X H, Xiao Z Y et al. Integrated nanophotonic wavelength router based on an intelligent algorithm[J]. Optica, 6, 1367-1373(2019).

    [67] Shen B, Polson R, Menon R. Integrated digital metamaterials enables ultra-compact optical diodes[J]. Optics Express, 23, 10847-10855(2015).

    [68] Xie H C, Liu Y J, Sun W Z et al. Inversely designed 1×4 power splitter with arbitrary ratios at 2-μm spectral band[J]. IEEE Photonics Journal, 10, 2700506(2018).

    [69] Xiao J B, Guo Z Z. Ultracompact polarization-insensitive power splitter using subwavelength gratings[J]. IEEE Photonics Technology Letters, 30, 529-532(2018).

    [70] Jiang W F, Wang X G. Ultra-broadband mode splitter based on phase controlling of bridged subwavelength grating[J]. Journal of Lightwave Technology, 38, 2414-2422(2020).

    [71] Ye C C, Dai D X. Ultra-compact broadband 2×2 3 dB power splitter using a subwavelength-grating-assisted asymmetric directional coupler[J]. Journal of Lightwave Technology, 38, 2370-2375(2020).

    [72] Yu L W, Guo J S, Xiang H T et al. High-performance 2×2 bent directional couplers designed with an efficient semi-inverse design method[J]. Journal of Lightwave Technology, 42, 740-747(2024).

    [73] Li Y H, Lü J, Jiang L et al. Reverse design of photonic devices based on a hybrid particle swarm algorithm[J]. Laser & Optoelectronics Progress, 59, 1113001(2022).

    [74] Wu S L, Mao S M, Zhou L D et al. A compact and polarization-insensitive silicon waveguide crossing based on subwavelength grating MMI couplers[J]. Optics Express, 28, 27268-27276(2020).

    [75] Xu H N, Shi Y C. Metamaterial‐based Maxwell’s fisheye lens for multimode waveguide crossing[J]. Laser & Photonics Reviews, 12, 1800094(2018).

    [76] Willner A E, Khaleghi S, Chitgarha M R et al. All-optical signal processing[J]. Journal of Lightwave Technology, 32, 660-680(2014).

    [77] Dai D X, Bowers J E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects[J]. Nanophotonics, 3, 283-311(2014).

    [78] Qi W, Yu Y, Zhang X L. On-chip arbitrary-mode spot size conversion[J]. Nanophotonics, 9, 4365-4372(2020).

    [79] Wang T, Guo H Q, Chen H X et al. Ultra-compact reflective mode converter based on a silicon subwavelength structure[J]. Applied Optics, 59, 2754-2758(2020).

    [80] Gabrielli L H, Liu D, Johnson S G et al. On-chip transformation optics for multimode waveguide bends[J]. Nature Communications, 3, 1217(2012).

    [81] Meng Y, Liu Z T, Xie Z W et al. Versatile on-chip light coupling and (de) multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface[J]. Photonics Research, 8, 564-576(2020).

    [82] Ohana D, Desiatov B, Mazurski N et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides[J]. Nano Letters, 16, 7956-7961(2016).

    [83] Priti R B, Liboiron-Ladouceur O. Reconfigurable and scalable multimode silicon photonics switch for energy-efficient mode-division-multiplexing systems[J]. Journal of Lightwave Technology, 37, 3851-3860(2019).

    [84] Priti R B, Zhang G W, Liboiron-Ladouceur O. 3×10 Gb/s silicon three-mode switch with 120° hybrid based unbalanced Mach-Zehnder interferometer[J]. Optics Express, 27, 14199-14212(2019).

    [85] Fu P H, Huang T Y, Fan K W et al. Optimization for ultrabroadband polarization beam splitters using a genetic algorithm[J]. IEEE Photonics Journal, 11, 6600611(2019).

    [86] Chen W W, Zhang B H, Wang P J et al. Ultra-compact and low-loss silicon polarization beam splitter using a particle-swarm-optimized counter-tapered coupler[J]. Optics Express, 28, 30701-30709(2020).

    [87] Guan H, Ma Y J, Shi R Z et al. Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits[J]. Optics Letters, 39, 4703-4706(2014).

    [88] Chang W J, Xu S Y, Cheng M F et al. Inverse design of a single-step-etched ultracompact silicon polarization rotator[J]. Optics Express, 28, 28343-28351(2020).

    [89] Lebbe N, Glière A, Hassan K. High-efficiency and broadband photonic polarization rotator based on multilevel shape optimization[J]. Optics Letters, 44, 1960-1963(2019).

    [90] Liu Y J, Wang S, Wang Y J et al. Subwavelength polarization splitter-rotator with ultra-compact footprint[J]. Optics Letters, 44, 4495-4498(2019).

    [91] Dou T, Yue S, Wang R et al. Ultra-compact and ultra-broadband arbitrary-order silicon photonic multi-mode converter designed by an intelligent algorithm[J]. Optics Express, 31, 9481-9495(2023).

    [92] Chen D G, Xiao X, Wang L et al. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers[J]. Optics Express, 23, 11152-11159(2015).

    [93] Jia H, Chen H X, Yang J H et al. Ultra-compact dual-polarization silicon mode-order converter[J]. Optics Letters, 44, 4179-4182(2019).

    [94] Frandsen L H, Elesin Y, Frellsen L F et al. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material[J]. Optics Express, 22, 8525-8532(2014).

    [95] Liu Y J, Wang Z, Liu Y L et al. Ultra-compact mode-division multiplexed photonic integrated circuit for dual polarizations[J]. Journal of Lightwave Technology, 39, 5925-5932(2021).

    [96] Xie H C, Liu Y J, Wang S et al. Highly compact and efficient four-mode multiplexer based on pixelated waveguides[J]. IEEE Photonics Technology Letters, 32, 166-169(2020).

    [97] Zhou H Y, Liao K, Su Z X et al. Tunable on-chip mode converter enabled by inverse design[J]. Nanophotonics, 12, 1105-1114(2023).

    [98] Chen W W, Wang P J, Yang J Y. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions[J]. Optics Express, 21, 25113-25119(2013).

    [99] Dai D X, Li C L, Wang S P et al. 10-channel mode (de) multiplexer with dual polarizations[J]. Laser & Photonics Reviews, 12, 1700109(2018).

    [100] Xu P F, Zhang Y F, Zhang S et al. Scaling and cascading compact metamaterial photonic waveguide filter blocks[J]. Optics Letters, 45, 4072-4075(2020).

    [101] Ma Y J, Magill P, Baehr-Jones T et al. Design and optimization of a novel silicon-on-insulator wavelength diplexer[J]. Optics Express, 22, 21521-21528(2014).

    [102] Han J M, Huang J, Wu J G et al. Inverse designed tunable four-channel wavelength demultiplexer[J]. Optics Communications, 465, 125606(2020).

    [103] Jia H, Yang S L, Zhou T et al. WDM-compatible multimode optical switching system-on-chip[J]. Nanophotonics, 8, 889-898(2019).

    [104] Atabaki A H, Moazeni S, Pavanello F et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 556, 349-354(2018).

    [105] Neilson D T, Doerr C R, Marom D M et al. Wavelength selective switching for optical bandwidth management[J]. Bell Labs Technical Journal, 11, 105-128(2006).

    [106] Lou B C, Rodríguez J A, Wang B et al. Inverse design of optical switch with meta-learning[C], 7-12(2023).

    [107] Yang J, Guidry M A, Lukin D M et al. Inverse-designed silicon carbide quantum and nonlinear photonics[J]. Light: Science & Applications, 12, 201(2023).

    [108] Shang C F, Yang J W, Hammond A M et al. Inverse-designed lithium niobate nanophotonics[J]. ACS Photonics, 10, 1019-1026(2023).

    [109] Gostimirovic D, Soref R. An integrated optical circuit architecture for inverse-designed silicon photonic components[J]. Sensors, 23, 626(2023).

    [110] Wei M L, Lin X B, Xu K et al. Inverse design of compact nonvolatile reconfigurable silicon photonic devices with phase-change materials[J]. Nanophotonics, 13, 2183-2192(2024).

    [111] Nikkhah V, Mencagli M, Engheta N. Reconfigurable nonlinear optical element using tunable couplers and inverse-designed structure[J]. Nanophotonics, 12, 3019-3027(2023).