• Acta Optica Sinica
  • Vol. 44, Issue 15, 1513019 (2024)
Tao Wang1,2, Qinghai Song1,2, and Ke Xu1,2,*
Author Affiliations
  • 1School of Integrated Circuits, Harbin Institute of Technology, Shenzhen 518055, Guangdong , China
  • 2Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Shenzhen 518055, Guangdong , China
  • show less
    DOI: 10.3788/AOS240865 Cite this Article Set citation alerts
    Tao Wang, Qinghai Song, Ke Xu. Research Progress on Integrated Optical Meta-Waveguide Based on Inverse Design (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513019 Copy Citation Text show less
    Large singular function device via forward design method to ultra-compact multi-function device via inverse design method[19,35,42-43]
    Fig. 1. Large singular function device via forward design method to ultra-compact multi-function device via inverse design method[19,35,42-43]
    Genetic algorithm. (a) Design process; (b) optimized reflector[27]; (c) optimized polarization rotator[28]
    Fig. 2. Genetic algorithm. (a) Design process; (b) optimized reflector[27]; (c) optimized polarization rotator[28]
    Particle swarm optimization algorithm. (a) Design process; (b) optimized power beam splitter [29]; (c) optimized polarization beam splitter[30]
    Fig. 3. Particle swarm optimization algorithm. (a) Design process; (b) optimized power beam splitter [29]; (c) optimized polarization beam splitter[30]
    Direct binary search algorithm. (a) Design process; (b) optimized polarization beam splitter[31]; (c) optimized mode (de) multiplexer[32]
    Fig. 4. Direct binary search algorithm. (a) Design process; (b) optimized polarization beam splitter[31]; (c) optimized mode (de) multiplexer[32]
    Topological optimization algorithm. (a) Principle of topological optimization[44]; (b) design process of the dense gradient topological optimization method; (c) optimized polarization beam splitter[34]; (d) optimized mode (de) multiplexer[35]
    Fig. 5. Topological optimization algorithm. (a) Principle of topological optimization[44]; (b) design process of the dense gradient topological optimization method; (c) optimized polarization beam splitter[34]; (d) optimized mode (de) multiplexer[35]
    Target priority algorithm. (a) Optimized mode size converter[37]; (b) optimized optical diode[38]
    Fig. 6. Target priority algorithm. (a) Optimized mode size converter[37]; (b) optimized optical diode[38]
    Level set method[40]. (a) Optimized 1×3 power splitter; (b) optimized three-channel wavelength (de) multiplexer
    Fig. 7. Level set method[40]. (a) Optimized 1×3 power splitter; (b) optimized three-channel wavelength (de) multiplexer
    Inverse-designed SOI grating couplers[48-53]
    Fig. 8. Inverse-designed SOI grating couplers[48-53]
    Parameters related to inverse-designed 3 dB power splitter[44,54-60]
    Fig. 9. Parameters related to inverse-designed 3 dB power splitter[44,54-60]
    Devices obtained based on inverse design method. (a) Optical cloak[65]; (b) optical router[66]; (c) optical diode[67]
    Fig. 10. Devices obtained based on inverse design method. (a) Optical cloak[65]; (b) optical router[66]; (c) optical diode[67]
    Devices obtained based on inverse design method. (a) Filter[100]; (b) reflector[27]
    Fig. 11. Devices obtained based on inverse design method. (a) Filter[100]; (b) reflector[27]
    Parameters related to inverse-designed wavelength (de) multiplexer[19,23,36,101-102]
    Fig. 12. Parameters related to inverse-designed wavelength (de) multiplexer[19,23,36,101-102]
    DeviceAlgorithmPortFootprintExperimentPerformance
    TE0 crossing[61]GA2×25 μm×5 μm/IL<0.30 dB, CT<-35.0 dB

    TE0 crossing[62]

    TM0 crossing[62]

    PSO2×22 μm×2 μm

    T: 69.1%, CT: -34.4 dB

    T: 89.7 %, CT: -84.8 dB

    Star crossing[63]DBS

    4×4

    5×5

    6×6

    7.10 μm2/port

    5.83 μm2/port

    7.30 μm2/port

    IL: 0.75 dB, CT: -22.5 dB

    IL: 0.90 dB, CT: -20.0 dB

    IL: 1.50 dB, CT: -18.0 dB

    TE0 crossing[43]

    TE1 crossing[43]

    TE2 crossing[43]

    DBS2×28 μm×8 μm

    IL: 0.28 dB, CT: -20.0 dB

    IL: 0.68 dB, CT: -20.0 dB

    IL: 0.82 dB, CT: -20.0 dB

    TE0 crossing[64]TO2×23.36 μm×3.36 μm/IL<0.09 dB, CT<-25.6 dB
    Table 1. Parameters related to inverse-designed crossings
    DeviceAlgorithmFootprintExperimentPerformance
    PBS[85]GA50 μm/

    IL: 0.14 dB, CT: -20.6 dB (TE)

    IL: 0.58 dB, CT: -16.2 dB (TM)

    BW: 250 nm

    PBS[86]PSO5 μm

    IL<0.50 dB, PER>16.68 dB (TE)

    IL<0.46 dB, PER>17.78 dB (TM)

    BW: 75 nm

    PBS[31]DBS2.4 μm×2.4 μm

    T>71%, PER>11.80 dB (TE)

    T>80%, PER>11.10 dB (TM)

    PBS[34]TO1.4 μm×1.4 μm

    IL: 0.82 dB, PER: 12.00 dB (TE)

    IL: 2.10 dB, PER: 15.00 dB (TM)

    BW: 100 nm

    Table 2. Parameters related to inverse-designed polarization beam splitter
    DeviceAlgorithmFootprintExperimentPerformance
    PR[28]GA0.96 μm×4.20 μmIL: 2.00 dB, PER: 10.00 dB, BW: 140 nm
    PR[87]PSO13.5 μm/IL: 0.20 dB, PER: 25.00 dB, BW: 80 nm
    PR[88]DBS1.2 μm×7.2 μmIL: 0.70 dB, PER: 19.00 dB, BW: 60 nm
    PR[89]TO1 μm×6 μm/IL: 0.33 dB, PER: 30.00 dB, BW: 100 nm
    Table 3. Parameters related to the inverse-designed polarization rotator
    DeviceAlgorithmFootprintExperimentPerformance

    TE0-TE1[91]

    TE0-TE2[91]

    TE0-TE3[91]

    TE0-TE4[91]

    GA1.8 μm×2.2 μm/

    IL: 0.48 dB, CT: -16.9 dB

    IL: 0.43 dB, CT: -15.0 dB

    IL: 1.40 dB, CT: -13.0 dB

    IL: 1.92 dB, CT: -10.9 dB

    TE1-TE0[92]

    TE2-TE0[92]

    TE3-TE0[92]

    PSO4 μm×35 μm/

    IL: 0.06 dB

    IL: 0.05 dB

    IL: 0.11 dB

    TE0-TE1[93]

    TM0-TM1[93]

    DBS4.0 μm×1.6 μm

    IL: 2.30 dB, CT: -13.7 dB

    IL: 1.40 dB, CT: -11.8 dB

    TE0-TE1[94]TO6.3 μm×3.6 μmIL: 2.00 dB, ER: 21.00 dB, BW: 43 nm
    Table 4. Parameters related to the inverse-designed mode converter
    ModeAlgorithmFootprintExperimentPerformance

    TE0/TE1[32]

    TE0/TE1/TE2[32]

    DBS

    2.4 μm×3.0 μm

    3.6 μm×4.8 μm

    /

    IL<1.00 dB, CT<-24.0 dB

    IL<2.50 dB, CT<-19.0 dB

    TE0/TE1/TM0/TM1[95]DBS6.8 μm×6.0 μmIL<1.40 dB, CT<-15.0 dB, BW: 40 nm
    TE0/TE1/TE2/TE3[96]DBS5.4 μm×6.0 μmIL<1.50 dB, CT<-14.6 dB, BW: 60 nm
    TE0/TE1[59]TO3.55 μm×2.55 μmIL<1.00 dB, CT<-15.6 dB, BW: 100 nm
    Table 5. Parameters related to the inverse-designed mode (de) multiplexer