• Frontiers of Optoelectronics
  • Vol. 4, Issue 4, 378 (2011)
Yueyin SHAO1、*, Yongqian WEI1, and Zhenghua WANG2
Author Affiliations
  • 1Laboratory Material Supply Centre, Soochow University, Suzhou 215123, China
  • 2Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
  • show less
    DOI: 10.1007/s12200-011-0171-8 Cite this Article
    Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Frontiers of Optoelectronics, 2011, 4(4): 378 Copy Citation Text show less
    References

    [1] Collins P G, Zettl A, Bando H, Thess A, Smalley R E. Nanotube nanodevice. Science, 1997, 278(5335): 100-103

    [2] Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291(5505): 851-853

    [3] Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P D. Nanoribbon waveguides for subwavelength photonics integration. Science, 2004, 305(5688): 1269-1273

    [4] Korgel B A. Materials science. Self-assembled nanocoils. Science, 2004, 303(5662): 1308-1309

    [5] Hu M S, Chen H L, Shen C H, Hong L S, Huang B R, Chen K H, Chen L C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nature Materials, 2006, 5(2): 102-106

    [6] Eisenstein M. Protein detection goes down to the wire. Nature Methods, 2005, 2(11): 804-805

    [7] Alivisatos P. The use of nanocrystals in biological detection. Nature Biotechnology, 2004, 22(1): 47-52

    [8] Ma D D D, Lee C S, Au F C K, Tong S Y, Lee S T. Small-diameter silicon nanowire surfaces. Science, 2003, 299(5614): 1874-1877

    [9] Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society, 2009, 131(49): 17738-17739

    [10] Cui Y, Duan X F, Hu J T, Lieber C M. Doping and electrical transport in silicon nanowires. Journal of Physical Chemistry B, 2000, 104(22): 5213-5216

    [11] Chung S W, Yu J Y, Heath J R. Silicon nanowire devices. Applied Physics Letters, 2000, 76(15): 2068-2070

    [12] Li Z, Chen Y, Li X, Kamins T I, Nauka K,Williams R S. Sequencespecific label-free DNA sensors based on silicon nanowires.Nano Letters, 2004, 4(2): 245-247

    [13] Zhou X T, Hu J Q, Li C P, Ma D D D, Lee C S, Lee S T. Silicon nanowires as chemical sensors. Chemical Physics Letters, 2003, 369(1-2): 220-224

    [14] ShaoMW, Shan Y Y,Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical applications: Glucose and hydrogen peroxide detection. Advanced Functional Materials, 2005, 15(9): 1478-1482

    [15] Shao M W, Yao H, Zhang M L, Wong N B, Shan Y Y, Lee S T. Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumin detection. Applied Physics Letters, 2005, 87(18): 183106

    [16] Lyon L A, Keating C D, Fox A P, Baker B E, He L, Nicewarner S R, Mulvaney S P, Natan M J. Raman spectroscopy. Analytical Chemistry, 1998, 70(12): 341-362

    [17] Mulvaney S P, Keating C D. Raman spectroscopy. Analytical Chemistry, 2000, 72(12): 145-158

    [18] Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chemical Society Reviews, 1998, 27(4): 241-250

    [19] Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews, 1999, 99(10): 2957-2976

    [20] Szulbinski W S, Czernuszewicz R S. The effect of ligand structure on surface enhanced Raman scattering by Fe(II) macrocyclic complexes: [FeIITPC]2+ and [FeIIDPC]2+. Inorganica Chimica Acta, 1996, 247(1): 11-18

    [21] Shao M W, Zhang M L, Wong N B, Ma D D D, Wang H, Chen W W, Lee S T. Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy. Applied Physics Letters, 2008, 93(23): 233118

    [22] Shao M W, Lu L, Wang H, Wang S, Zhang M L, Ma D D D, Lee S T. An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper. Chemical Communicatons, 2008, (20): 2310-2312

    [23] D’Urzo L, Bozzini B. SERS study of the galvanostatic sequence used for the electrochemical deposition of copper from baths employed in the fabrication of interconnects. Journal of Materials Science Materials in Electronics, 2009, 20(3): 217-222

    [24] Bozzini B, D’Urzo L, Mele C, Romanello V. Electrodeposition of Cu from acidic sulphate solutions in the presence of polyethylene glycol and chloride ions. Journal of Materials Science Materials in Electronics, 2006, 17(11): 915-923

    [25] Mosier-Boss P A, Lieberman S H. Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationiccoated, silver substrates. Applied Spectroscopy, 2000, 54(8): 1126-1135

    Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Frontiers of Optoelectronics, 2011, 4(4): 378
    Download Citation