[1]
[2] S Nakamura. III−V nitride based light-emitting devices. Solid State Commun, 102, 237(1997).
[3] H Masui, S Nakamura, S P DenBaars et al. Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges. IEEE Trans Electron Devices, 57, 88(2010).
[4] H P Hu, S J Zhou, X T Liu et al. Effects of GaN/AlGaN/sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes. Sci Rep, 7, 44627(2017).
[5] M Kneissl, T Kolbe, C Chua et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 26, 014036(2011).
[6]
[7] A Khan, K Balakrishnan, T Katona. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics, 2, 77(2008).
[8] S Nakamura, M R Krames. History of gallium-nitride-based light-emitting diodes for illumination. Proc IEEE, 101, 2211(2013).
[9] G Verzellesi, D Saguatti, M Meneghini et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: physic mechanisms remedies. J Appl Phys, 114, 071101(2013).
[10] W Yang, W Wang, Y Lin et al. Deposition of nonpolar mplane InGaN/GaN multiple quantum wells on LiGaO+(100) substrates. J Mater Chem C, 2, 801(2014).
[11] M F Schubert, J Xu, J K Kim et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett, 93, 041102(2008).
[12] Z T Lin, H Y Wang, W L Wang et al. Employing low-temperature barriers to achieve strain-relaxed and high-performance GaN-based LEDs. Opt Express, 24, 11886(2016).
[13] H Hirayama, S Fujikawa, N Noguchi et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys Status Solidi A, 206, 1176(2009).
[14] T Takano, S Fujikawa, Y Kondo et al. Remarkable improvement in output power for an InAlGaN based ultraviolet LED by improving the crystalline quality of AlN/AlGaN templates. J Phys Status Solidi C, 5, 2102(2008).
[15] Z T Lin, H T Wang, Y H Lin et al. Stress management on underlying GaN-based epitaxial films: A new vision for achieving high-performance LEDs on Si substrates. J Appl Phys, 122, 204503(2017).
[16] K Meel, P Mahala, S Singh. Design and fabrication of multi quantum well based GaN/InGaN blue LED. IOP Conf Ser: Mater Sci Eng, 331, 012008(2018).
[17] S Gautier, G Patriarche, T Moudakir. Deep structural analysis of novel BGaN material layers grown by MOVPE. J Cryst Growth, 315, 288(2011).
[18] R S Pease. An X-ray study of boron nitride. Acta Crystallogr, 5, 356(1952).
[19] A Herold, B Marzluf, P Perio et al. Inorganic reactions and methods. Formation of Ceramics Seances Acad Sci, 246, 1866(1958).
[20] J Thomas, N E Weston, T O’connor et al. Boron nitride, thermal transformation to ordered-layer-lattice boron nitride. J Am Chem Soc, 84, 4619(1962).
[21] R Jr Wentorf. Cubic form of boron nitride. J Chem Phys, 26, 956(1957).
[22] R Jr Wentorf. Synthesis of the cubic form of boron nitride. J Chem Phys, 34, 809(1961).
[23] J Y Tsao, S Chowdhury, M A Hollis et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv Electron Mater, 4, 1600501(2018).
[24] X Zhang. Doping and electrical properties of cubic boron nitride thin films: A critical review. Thin solid films, 544, 2(2013).
[25] C E Dreyer, J L Lyons, A Janotti et al. Band alignments and polarization properties of BN polymorphs. Appl Phys Express, 7, 031001(2014).
[26] B P Gunning, M W Moseley, D D Koleske et al. Phase degradation in B
[27] A Ougazzaden, S Gautier, T Moudakir. Band gap bowing in BGaN thin films. Appl Phys Lett, 93, 083118(2008).
[28]
[29] A Lachebi, H Abid, Y DrizMand Al-Douri. First-principles study of cubic B
[30]
[31] O Ambacher, R Dimitrov, M Stutzmann et al. Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices. Phys Status Solidi, 216, 381(1999).