• Laser & Optoelectronics Progress
  • Vol. 58, Issue 9, 0900007 (2021)
Liping Wang1, Bin Wang2、3、*, Guangshi Li1、4, Hongbin Zhu2、3, and Xionggang Lu1、4、5
Author Affiliations
  • 1School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • 2Innovation Academy for Microsatellites of Chinese Academy Sciences, Shanghai 201203, China
  • 3Shanghai Engineering Center for Microsatellites, Shanghai 201203, China
  • 4State Key Laboratory of Advanced Special Steel (Shanghai University), Shanghai 200444, China
  • 5Shanghai Metal Parts Green Remanufacture Engineering Technology Research Center, Shanghai 200444, China
  • show less
    DOI: 10.3788/LOP202158.0900007 Cite this Article Set citation alerts
    Liping Wang, Bin Wang, Guangshi Li, Hongbin Zhu, Xionggang Lu. Nanomaterials Prepared via Pulsed Laser Processes[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900007 Copy Citation Text show less
    References

    [1] Zhu S D, Zhou G S, Cai R et al. Research of the nano-materials at home and abroad Ⅰ: the structure, specific effects and performance of the nano-materials[J]. Heat Treatment Technology and Equipment, 31, 1-5, 26(2010).

    [2] Zhu S D, Xu Z Q, Bai Z Q et al. Research of the nano-materials at home and abroad Ⅱ: the applications and preparation of the nano-material[J]. Heat Treatment Technology and Equipment, 31, 1-8(2010).

    [3] Dubey A K, Yadava V. Laser beam machining: a review[J]. International Journal of Machine Tools and Manufacture, 48, 609-628(2008).

    [4] Zhong M L, Liu W J. Leading areas and hot topics on global laser materials processing research[J]. Chinese Journal of Lasers, 35, 1653-1659(2008).

    [5] Zhou R, Li F P, Hong M H et al. Laser interaction with materials and its applications in precision engineering[J]. Scientia Sinica (Physica,Mechanica & Astronomica), 47, 25-34(2017).

    [6] Bulgakova N M, Stoian R, Rosenfeld A et al. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion[J]. Applied Physics A, 81, 345-356(2005).

    [7] Jiang L, Tsai H L. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics[J]. Journal of Applied Physics, 104, 093101(2008).

    [8] Cheng Y, Lu Y M, Guo Y L et al. Development of function films prepared by pulsed laser deposition technology[J]. Laser & Optoelectronics Progress, 52, 120003(2015).

    [9] Bleu Y, Bourquard F, Tite T et al. Review of graphene growth from a solid carbon source by pulsed laser deposition (PLD)[J]. Frontiers in Chemistry, 6, 572(2018).

    [10] Vanalakar S A, Agawane G L, Shin S W et al. A review on pulsed laser deposited CZTS thin films for solar cell applications[J]. Journal of Alloys and Compounds, 619, 109-121(2015).

    [11] Wang L D, Kwok H S. Pulsed laser deposition of organic thin films[J]. Thin Solid Films, 363, 58-60(2000).

    [12] Rodríguez I O, Hernández R, Medel A et al. TiO2/Au/TiO2 multilayer thin-film photoanodes synthesized by pulsed laser deposition for photoelectrochemical degradation of organic pollutants[J]. Separation and Purification Technology, 224, 189-198(2019).

    [13] Lorenz M, Wei H M, Jung F et al. Two-dimensional Frank-van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition[J]. Journal of Materials Research, 32, 3936-3946(2017).

    [14] Tian K, Tudu B, Tiwari A et al. Growth and characterization of zinc oxide thin films on flexible substrates at low temperature using pulsed laser deposition[J]. Vacuum, 146, 483-491(2017).

    [15] Luttrell T, Halpegamage S, Sutter E et al. Photocatalytic activity of anatase and rutile TiO2 epitaxial thin film grown by pulsed laser deposition[J]. Thin Solid Films, 564, 146-155(2014).

    [16] Dai X H, Zhang Y S, Ge D Y et al. Investigation of YBa2Cu3O7-δ film deposited in O2/Ar mixture atmosphere by pulsed laser deposition[J]. Journal of Synthetic Crystals, 46, 1464-1469(2017).

    [17] Deng Z C, Liu J D, Wang X et al. Growth characteristics of Ag nanocrystalline thin films prepared by pulsed laser ablation in vacuum[J]. Chinese Journal of Lasers, 46, 0903003(2019).

    [18] Liu X F, Wang X P, Wang L J et al. Research progress in transparent conducting films[J]. Laser & Optoelectronics Progress, 49, 100003(2012).

    [19] Guo D S, Chen Z N, Wang D K et al. Effects of annealing temperature on crystal quality and photoelectric properties of Al-doped ZnO thin film[J]. Chinese Journal of Lasers, 46, 0403002(2019).

    [20] Krämer A, Engel S, Sangiorgi N et al. ZnO thin films on single carbon fibres fabricated by pulsed laser deposition (PLD)[J]. Applied Surface Science, 399, 282-287(2017).

    [21] Saxena N, Manzhi P, Choudhary R J et al. Performance optimization of transparent and conductive Zn1-xAlxO thin films for opto-electronic devices: an experimental & first-principles investigation[J]. Vacuum, 177, 109369(2020).

    [22] Darwish A M, Muhammad A, Sarkisov S S et al. Thermoelectric properties of Al-doped ZnO composite films with polymer nanoparticles prepared by pulsed laser deposition[J]. Composites Part B: Engineering, 167, 406-410(2019).

    [23] He Y R, Tian X R, Zhao G C et al. Research progress in preparation and application of graphene films[J]. Materials Reports, 34, 5048-5060, 5077(2020).

    [24] Yuan Y J, Li X. Femtosecond laser processing of graphene and its application[J]. Laser & Optoelectronics Progress, 57, 111414(2020).

    [25] Maddi C, Bourquard F, Barnier V et al. Nano-architecture of nitrogen-doped graphene films synthesized from a solid CN source[J]. Scientific Reports, 8, 3247(2018).

    [26] Kumar I, Khare A. Multi- and few-layer graphene on insulating substrate via pulsed laser deposition technique[J]. Applied Surface Science, 317, 1004-1009(2014).

    [27] Xu S C, Man B Y, Jiang S Z et al. Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite[J]. Laser Physics Letters, 11, 096001(2014).

    [28] Kumar S R S, Nayak P K, Hedhili M N et al. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition[J]. Applied Physics Letters, 103, 192109(2013).

    [29] Hu P, Chen Z Y, Wang K S et al. Present status and perspective of two-dimensional layered molybdenum disulfide and its composites[J]. CIESC Journal, 68, 1286-1298(2017).

    [30] Son Y, Wang Q H, Paulson J A et al. Layer number dependence of MoS2 photoconductivity using photocurrent spectral atomic force microscopic imaging[J]. ACS Nano, 9, 2843-2855(2015).

    [31] Serrao C R, Diamond A M, Hsu S L et al. Highly crystalline MoS2 thin films grown by pulsed laser deposition[J]. Applied Physics Letters, 106, 052101(2015).

    [32] Serna M I, Yoo S H, Moreno S et al. Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control[J]. ACS Nano, 10, 6054-6061(2016).

    [33] Chen C, Wang T, Bao X et al. Progress in photoluminescence of MoS2[J]. Electronic Components and Materials, 38, 1-8(2019).

    [34] Barvat A, Prakash N, Satpati B et al. Emerging photoluminescence from bilayer large-area 2D MoS2 films grown by pulsed laser deposition on different substrates[J]. Journal of Applied Physics, 122, 015304(2017).

    [35] Tao B W, Xiong J, Liu X Z et al. Progress in research of coated conductors[J]. Materials China, 28, 16-22(2009).

    [36] Din F U, Shaari A H, Kien C S et al. Conversion of YBCO pellet into single layer thin film using pulse laser deposition[J]. Journal of Physics: Conference Series, 1082, 012024(2018).

    [37] Proyer S, Stangl E, Borz M et al. Classification of particulates on pulsed-laser deposited Y-Ba-Cu-O films[J]. Applied Surface Science, 97, 668-671(96).

    [38] Suh J D, Sung G Y. Crystal orientation control of YBa2Cu3O7-x thin films prepared by pulsed laser deposition[J]. 284, 286, 579-580(285).

    [39] Opherden L, Sieger M, Pahlke P et al. Large pinning forces and matching effects in YBa2Cu3O7-δthin films with Ba2Y(Nb/Ta)O6 nano-precipitates[J]. Scientific Reports, 6, 1-10(2016).

    [40] Panna D, Balasubramanian K, Bouscher S et al. Nanoscale high-Tc YBCO/GaN super-Schottky diode[J]. Scientific Reports, 8, 5597(2018).

    [41] Crassous A, Bernard R, Fusil S et al. BiFeO3/YBa2Cu3O7-δ heterostructures for strong ferroelectric modulation of superconductivity[J]. Journal of Applied Physics, 113, 024910(2013).

    [42] Leng X, Barriocanal J G, Yang B Y et al. Indications of an electronic phase transition in two-dimensional superconducting YB2Cu3O7-x thin films induced by electrostatic doping[J]. Physical Review Letters, 108, 067004(2012).

    [43] Kang L S, Kim J S, Sun J W et al. Electrical properties of Bi2Ti2O7 thin films grown at low temperature by the pulsed laser deposition[J]. Electrochemical and Solid-State Letters, 14(2011).

    [44] Liang L R, Wang F, Qiu Z M et al. Synthesization of (Bi, Er)2Ti2O7 dielectric thin films by pulse laser deposition method and its up-conversion luminescence[J]. Laser & Optoelectronics Progress, 54, 013101(2017).

    [45] von Wenckstern H, Kneiß M, Hassa A et al. A review of the segmented-target approach to combinatorial material synthesis by pulsed-laser deposition[J]. Physica Status Solidi B, 257, 1900626(2019).

    [46] von Wenckstern H, Zhang Z P, Schmidt F et al. Continuous composition spread using pulsed-laser deposition with a single segmented target[J]. CrystEngComm, 15, 10020(2013).

    [47] Kneiß M, Storm P, Benndorf G et al. Combinatorial material science and strain engineering enabled by pulsed laser deposition using radially segmented targets[J]. ACS Combinatorial Science, 20, 643-652(2018).

    [48] Zeng H B, Du X W, Singh S C et al. Nanomaterials via laser ablation/irradiation in liquid: a review[J]. Advanced Functional Materials, 22, 1333-1353(2012).

    [49] Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?[J]. Physical Chemistry Chemical Physics, 15, 3027-3046(2013).

    [50] Zhang D S, Gökce B, Barcikowski S et al. Laser synthesis and processing of colloids: fundamentals and applications[J]. Chemical Reviews, 117, 3990-4103(2017).

    [51] Lu X G, Huang L C, Yang L Y et al. Research progress of preparation methods of nano iron oxide[J]. Applied Chemical Industry, 46, 741-743, 748(2017).

    [52] Liu P S, Cai W P, Zeng H B et al. Fabrication and size-dependent optical properties of FeO nanoparticles induced by laser ablation in a liquid medium[J]. The Journal of Physical Chemistry C, 112, 3261-3266(2008).

    [53] Warkocka Z S, Kawaguchi K, Wang H Q et al. Controlling exchange bias in Fe3O4/FeO composite particles prepared by pulsed laser irradiation[J]. Nanoscale Research Letters, 6, 1-7(2011).

    [54] Dadashi S, Poursalehi R, Delavari H et al. Structural and optical properties of pure iron and iron oxide nanoparticles prepared via pulsed Nd∶‍YAG laser ablation in liquid[J]. Procedia Materials Science, 11, 722-726(2015).

    [55] Yao K L, Dai B, Qiao P F et al. Research progress of nano-diamond materials[J]. Journal of Synthetic Crystals, 48, 1977-1989(2019).

    [56] Ogale S B, Malshe A P, Kanetkar S M et al. Formation of diamond particulates by pulsed ruby laser irradiation of graphite immersed in benzene[J]. Solid State Communications, 84, 371-373(1992).

    [57] Wang Y H, Yu R Q, Liu Z Y et al. Production of diamond nanospherulite at carbon-water interface by laser ablation and its characterization by TEM[J]. Chemical Journal of Chinese Universities, 18, 124-126(1997).

    [58] Yang L, May P W, Yin L et al. Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid[J]. Diamond and Related Materials, 6, 725-729(2007).

    [59] Amans D, Chenus A C, Ledoux G et al. Nanodiamond synthesis by pulsed laser ablation in liquids[J]. Diamond and Related Materials, 18, 177-180(2009).

    [60] Amans D, Diouf M, Lam J et al. Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis[J]. Journal of Colloid and Interface Science, 489, 114-125(2017).

    [61] Tilaki R M, Zad A, Mahdavi S M et al. Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media[J]. Applied Physics A, 84, 215-219(2006).

    [62] Mendieta R T, Mondragón R, Juliá J et al. Fabrication of high stable gold nanofluid by pulsed laser ablation in liquids[J]. Advanced Materials Letters, 6, 1037-1042(2015).

    [63] Rubio G G, de Oliveira T M, Albrecht W et al. Formation of hollow gold nanocrystals by nanosecond laser irradiation[J]. The Journal of Physical Chemistry Letters, 11, 670-677(2020).

    [64] Amendola V, Riello P, Meneghetti M et al. Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents[J]. The Journal of Physical Chemistry C, 115, 5140-5146(2011).

    [65] Chakraborty M, Hsiao F W, Naskar B et al. Surfactant-assisted synthesis and characterization of stable silver bromide nanoparticles in aqueous media[J]. Langmuir, 28, 9906(2012).

    [66] Chaturvedi A, Joshi M P, Mondal P et al. Growth of anatase and rutile phase TiO2 nanoparticles using pulsed laser ablation in liquid: influence of surfactant addition and ablation time variation[J]. Applied Surface Science, 396, 303-309(2017).

    [67] Xiao J, Liu P, Wang C X et al. External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly[J]. Progress in Materials Science, 87, 140-220(2017).

    [68] Mejía O O, Mondragón M F, de la Concha G R et al. SERS-active Ag, Au and Ag-Au alloy nanoparticles obtained by laser ablation in liquids for sensing methylene blue[J]. Applied Surface Science, 348, 66-70(2015).

    [69] Musaev O R, Sutter E, Wrobel J M et al. Structures of BiInSn nanoparticles formed through laser ablation[J]. Applied Physics A, 110, 329-333(2013).

    [70] Vinod M, Gopchandran K G. Bimetallic Au-Ag nanochains as SERS substrates[J]. Current Applied Physics, 15, 857-863(2015).

    [71] Zhang J, Post M, Veres T et al. Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles[J]. The Journal of Physical Chemistry, 110, 7122-7128(2006).

    [72] Serkov A A, Barmina E V, Simakin A V et al. Generation of core-shell nanoparticles Al@Ti by laser ablation in liquid for hydrogen storage[J]. Applied Surface Science, 348, 71-74(2015).

    [73] Sheykhifard Z, Ranjbar M, Farrokhpour H et al. Direct fabrication of Au/Pd(II) colloidal core-shell nanoparticles by pulsed laser ablation of gold in PdCl2 solution[J]. The Journal of Physical Chemistry C, 119, 9534-9542(2015).

    [74] Zeng H B, Cai W P, Hu J L et al. Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation[J]. Applied Physics Letters, 88, 171910(2006).

    [75] Liu P, Chen H J, Wang H et al. Fabrication of Si/Au core/shell nanoplasmonic structures with ultrasensitive surface-enhanced raman scattering for monolayer molecule detection[J]. The Journal of Physical Chemistry C, 119, 1234-1246(2015).

    [76] Eskandari M J, Shafyei A, Karimzadeh F et al. One-step fabrication of Au@Al2O3 core-shell nanoparticles by continuous-wave fiber laser ablation of thin gold layer on aluminum surface: structural and optical properties[J]. Optics & Laser Technology, 126, 106066(2020).

    [77] Xu X X, Gao L, Duan G T et al. The fabrication of Au@C core/shell nanoparticles by laser ablation in solutions and their enhancements to a gas sensor[J]. Micromachines, 9, 278(2018).

    [78] Makridis S S, Gkanas E I, Panagakos G et al. Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage[J]. International Journal of Hydrogen Energy, 38, 11530-11535(2013).

    [79] He C, Sasaki T, Zhou Y et al. Surfactant-assisted preparation of novel layered silver bromide-based inorganic/organic nanosheets by pulsed laser ablation in aqueous media[J]. Advanced Functional Materials, 17, 3554-3561(2007).

    [80] Karpukhin V T, Malikov M M, Borodina T I et al. Synthesis of layered organic-inorganic nanocomposites of zinc and copper by laser ablation in liquid[J]. Journal of Nanotechnology, 2012, 1-9(2012).

    [81] Mastrotto F, Caliceti P, Amendola V et al. Polymer control of ligand display on gold nanoparticles for multimodal switchable cell targeting[J]. Chemical Communications, 47, 9846-9848(2011).

    [82] Malviya K D, Chattopadhyay K. Synthesis and mechanism of composition and size dependent morphology selection in nanoparticles of Ag-Cu alloys processed by laser ablation under liquid medium[J]. The Journal of Physical Chemistry C, 118, 13228-13237(2014).

    [83] Malviya K D, Chattopadhyay K. High quality oxide-free metallic nanoparticles: a strategy for synthesis through laser ablation in aqueous medium[J]. Journal of Materials Science, 50, 980-989(2015).

    [84] Malviya K D, Chattopadhyay K. Temperature-and size-dependent compositionally tuned microstructural landscape for Ag-46 atom % Cu nanoalloy prepared by laser ablation in liquid[J]. The Journal of Physical Chemistry C, 120, 27699-27706(2016).

    [85] Malviya K D, Srivastava C, Chattopadhyay K et al. Phase formation and stability of alloy phases in free nanoparticles: some insights[J]. RSC Advances, 5, 35541-35550(2015).

    [86] Zhang D S, Ma Z, Spasova M et al. Formation mechanism of laser-synthesized iron-manganese alloy nanoparticles, manganese oxide nanosheets and nanofibers[J]. Particle & Particle Systems Characterization, 34, 1600225(2017).

    [87] Nancy P, Nair A K, James J et al. Green synthesis of graphene oxide/Ag nanocomposites via laser ablation in water for SERS applications[J]. AIP Conference Proceedings, 2100, 020025(2019).

    [88] Wang B, Zhang Z B, Zhong S P et al. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology[J]. Journal of Materials Chemistry C, 8, 4988-5014(2020).

    [89] Streubel R, Barcikowski S, Gökce B et al. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids[J]. Optics Letters, 41, 1486-1489(2016).

    [90] Streubel R, Bendt G, Gökce B et al. Pilot-scale synthesis of metal nanoparticles by high-speed pulsed laser ablation in liquids[J]. Nanotechnology, 27, 205602(2016).

    [91] Liu P, Wang C X, Chen X Y et al. Controllable fabrication and cathodoluminescence performance of high-index facets GeO2 micro-and nanocubes and spindles upon electrical-field-assisted laser ablation in liquid[J]. The Journal of Physical Chemistry C, 112, 13450-13456(2008).

    [92] Liang Y, Liu P, Li H B et al. ZnMoO4 micro-and nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties[J]. Crystal Growth & Design, 12, 4487-4493(2012).

    [93] Liang Y, Liu P, Li H B et al. Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance[J]. CrystEngComm, 14, 3291-3296(2012).

    Liping Wang, Bin Wang, Guangshi Li, Hongbin Zhu, Xionggang Lu. Nanomaterials Prepared via Pulsed Laser Processes[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900007
    Download Citation