• Laser & Optoelectronics Progress
  • Vol. 56, Issue 11, 112801 (2019)
Wenxiu Teng1、**, Ni Wang2、3、*, Taisheng Chen2、3, Benlin Wang2、3、4, Menglin Chen2、3, and Huihui Shi3
Author Affiliations
  • 1 College of Forest, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
  • 2 School of Geographic Information and Tourism, Chuzhou University, Chuzhou, Anhui 239000, China
  • 3 Anhui Engineering Laboratory of Geographical Information Intelligent Sensor and Service, Chuzhou, Anhui 239000, China
  • 4 School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • show less
    DOI: 10.3788/LOP56.112801 Cite this Article Set citation alerts
    Wenxiu Teng, Ni Wang, Taisheng Chen, Benlin Wang, Menglin Chen, Huihui Shi. Deep Adversarial Domain Adaptation Method for Cross-Domain Classification in High-Resolution Remote Sensing Images[J]. Laser & Optoelectronics Progress, 2019, 56(11): 112801 Copy Citation Text show less
    References

    [1] Li D R, Tong Q X, Li R X et al. Some frontier scientific issues in high-resolution Earth technology[J]. Scientia Sinica(Terrae), 42, 805-813(2012).

         Li D R, Tong Q X, Li R X et al. Some frontier scientific issues in high-resolution Earth technology[J]. Scientia Sinica(Terrae), 42, 805-813(2012).

    [2] Zhang L P, Huang X. Advanced processing techniques for remotely sensed imagery[J]. Journal of Remote Sensing, 13, 559-569(2009).

         Zhang L P, Huang X. Advanced processing techniques for remotely sensed imagery[J]. Journal of Remote Sensing, 13, 559-569(2009).

    [3] Zhang F. Deep learning for very high resolution remote sensing data analysis[D]. Wuhan: Wuhan University(2017).

         Zhang F. Deep learning for very high resolution remote sensing data analysis[D]. Wuhan: Wuhan University(2017).

    [4] Hu F. Feature learning based high resolution remote sensing image scene classification[D]. Wuhan: Wuhan University(2017).

         Hu F. Feature learning based high resolution remote sensing image scene classification[D]. Wuhan: Wuhan University(2017).

    [5] Xia G S, Yang W, Delon J et al. Structural high-resolution satellite image indexing. [C]∥ISPRS TC VII Symposium-100 Years ISPRS, July 5-7, 2010, Vienna, Austria. [S. l. : s. n.], 298-303(2010).

         Xia G S, Yang W, Delon J et al. Structural high-resolution satellite image indexing. [C]∥ISPRS TC VII Symposium-100 Years ISPRS, July 5-7, 2010, Vienna, Austria. [S. l. : s. n.], 298-303(2010).

    [6] Risojevic V, Momic S, Babic Z. Gabor descriptors for aerial image classification[M]. ∥Dobnikar A, Lotric U, Šter B. Adaptive and Natural Computing Algorithms. Berlin, Heidelberg: Springer, 6954, 51-60(2011).

         Risojevic V, Momic S, Babic Z. Gabor descriptors for aerial image classification[M]. ∥Dobnikar A, Lotric U, Šter B. Adaptive and Natural Computing Algorithms. Berlin, Heidelberg: Springer, 6954, 51-60(2011).

    [7] Yu H, Yang W, Xia G S et al. A color-texture-structure descriptor for high-resolution satellite image classification[J]. Remote Sensing, 8, 259(2016). http://adsabs.harvard.edu/abs/2016RemS....8..259Y

         Yu H, Yang W, Xia G S et al. A color-texture-structure descriptor for high-resolution satellite image classification[J]. Remote Sensing, 8, 259(2016). http://adsabs.harvard.edu/abs/2016RemS....8..259Y

    [8] Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification. [C]∥Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2-5, 2010, San Jose, California. New York: ACM, 270-279(2010).

         Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification. [C]∥Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2-5, 2010, San Jose, California. New York: ACM, 270-279(2010).

    [9] Hu F, Xia G S, Wang Z F et al. Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 2015-2030(2015). http://ieeexplore.ieee.org/document/7152876/

         Hu F, Xia G S, Wang Z F et al. Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 2015-2030(2015). http://ieeexplore.ieee.org/document/7152876/

    [10] Lienou M, Maitre H, Datcu M. Semantic annotation of satellite images using latent dirichlet allocation[J]. IEEE Geoscience and Remote Sensing Letters, 7, 28-32(2010). http://ieeexplore.ieee.org/document/5184874/

         Lienou M, Maitre H, Datcu M. Semantic annotation of satellite images using latent dirichlet allocation[J]. IEEE Geoscience and Remote Sensing Letters, 7, 28-32(2010). http://ieeexplore.ieee.org/document/5184874/

    [11] Zhong Y F, Zhu Q Q, Zhang L P. Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 6207-6222(2015). http://ieeexplore.ieee.org/document/7119589/

         Zhong Y F, Zhu Q Q, Zhang L P. Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 6207-6222(2015). http://ieeexplore.ieee.org/document/7119589/

    [12] Yan M, Zhao H D, Li Y H et al. Multi-classification and recognition of hyperspectral remote sensing objects based on convolutional neural network[J]. Laser & Optoelectronics Progress, 56, 021702(2019).

         Yan M, Zhao H D, Li Y H et al. Multi-classification and recognition of hyperspectral remote sensing objects based on convolutional neural network[J]. Laser & Optoelectronics Progress, 56, 021702(2019).

    [13] Teng W X, Wen X R, Wang N et al. Tree species classification and mapping based on deep transfer learning with unmanned aerial vehicle high resolution images[J]. Laser & Optoelectronics Progress, 56, 072801(2019).

         Teng W X, Wen X R, Wang N et al. Tree species classification and mapping based on deep transfer learning with unmanned aerial vehicle high resolution images[J]. Laser & Optoelectronics Progress, 56, 072801(2019).

    [14] Qian X L, Li J, Cheng G et al. Evaluation of the effect of feature extraction strategy on the performance of high-resolution remote sensing image scene classification[J]. Journal of Remote Sensing, 22, 758-776(2018).

         Qian X L, Li J, Cheng G et al. Evaluation of the effect of feature extraction strategy on the performance of high-resolution remote sensing image scene classification[J]. Journal of Remote Sensing, 22, 758-776(2018).

    [15] Penatti O A B, Nogueira K, dos Santos J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 44-51(2015).

         Penatti O A B, Nogueira K, dos Santos J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 44-51(2015).

    [16] Gong X, Wu L, Xie Z et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Acta Optica Sinica, 39, 0301002(2019).

         Gong X, Wu L, Xie Z et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Acta Optica Sinica, 39, 0301002(2019).

    [17] Li E Z. Research on remotely sensed image scene deep learning and application[D]. Nanjing: Nanjing University(2017).

         Li E Z. Research on remotely sensed image scene deep learning and application[D]. Nanjing: Nanjing University(2017).

    [18] Basu S, Ganguly S, Mukhopadhyay S et al. -09-11)[2018-12-01]. https:∥arxiv., org/abs/1509, 03602(2015).

         Basu S, Ganguly S, Mukhopadhyay S et al. -09-11)[2018-12-01]. https:∥arxiv., org/abs/1509, 03602(2015).

    [19] Zhang F, Du B, Zhang L P. Scene classification via a gradient boosting random convolutional network framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 1793-1802(2016). http://ieeexplore.ieee.org/document/7310864

         Zhang F, Du B, Zhang L P. Scene classification via a gradient boosting random convolutional network framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 1793-1802(2016). http://ieeexplore.ieee.org/document/7310864

    [20] Xu S H, Mu X D, Zhang X M et al. Unsupervised remote sensing domain adaptation method with adversarial network and auxiliary task[J]. Acta Geodaetica et Cartographica Sinica, 46, 1969-1977(2017).

         Xu S H, Mu X D, Zhang X M et al. Unsupervised remote sensing domain adaptation method with adversarial network and auxiliary task[J]. Acta Geodaetica et Cartographica Sinica, 46, 1969-1977(2017).

    [21] Gong J Y, Ji S P. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 47, 693-704(2018).

         Gong J Y, Ji S P. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 47, 693-704(2018).

    [22] Long M S, Cao Y, Wang J M et al. Learning transferable features with deep adaptation networks. [C]∥Proceedings of the 32nd International Conference on International Conference on Machine Learning, July 6-11, 2015, Lille, France. Massachusetts: JMLR. org, 97-105(2015).

         Long M S, Cao Y, Wang J M et al. Learning transferable features with deep adaptation networks. [C]∥Proceedings of the 32nd International Conference on International Conference on Machine Learning, July 6-11, 2015, Lille, France. Massachusetts: JMLR. org, 97-105(2015).

    [23] Ganin Y, Ustinova E, Ajakan H et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 17, 2096-2030(2017). http://link.springer.com/chapter/10.1007/978-3-319-58347-1_10

         Ganin Y, Ustinova E, Ajakan H et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 17, 2096-2030(2017). http://link.springer.com/chapter/10.1007/978-3-319-58347-1_10

    [24] Tzeng E, Hoffman J, Saenko K et al. -02-17)[2018-12-01]. https:∥arxiv., org/abs/1702, 05464(2017).

         Tzeng E, Hoffman J, Saenko K et al. -02-17)[2018-12-01]. https:∥arxiv., org/abs/1702, 05464(2017).

    [25] Othman E, Bazi Y, Melgani F et al. Domain adaptation network for cross-scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 4441-4456(2017). http://ieeexplore.ieee.org/document/7917346/

         Othman E, Bazi Y, Melgani F et al. Domain adaptation network for cross-scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 4441-4456(2017). http://ieeexplore.ieee.org/document/7917346/

    [26] Ammour N, Bashmal L, Bazi Y et al. Asymmetric adaptation of deep features for cross-domain classification in remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 15, 597-601(2018). http://ieeexplore.ieee.org/document/8291513/

         Ammour N, Bashmal L, Bazi Y et al. Asymmetric adaptation of deep features for cross-domain classification in remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 15, 597-601(2018). http://ieeexplore.ieee.org/document/8291513/

    [27] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, December 8-13, 2014, Montreal, Canada., 2672-2680(2014).

         Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, December 8-13, 2014, Montreal, Canada., 2672-2680(2014).

    [28] Kingma D P. -01-30)[2018-12-01]. https:∥arxiv., org/abs/1412, 6980(2017).

         Kingma D P. -01-30)[2018-12-01]. https:∥arxiv., org/abs/1412, 6980(2017).

    [29] Li H, Tao C, Wu Z et al. -06-11)[2018-12-01]. https:∥arxiv., org/abs/1705, 10450(2017).

         Li H, Tao C, Wu Z et al. -06-11)[2018-12-01]. https:∥arxiv., org/abs/1705, 10450(2017).

    [30] Cheng G, Han J W, Lu X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 105, 1865-1883(2017). http://ieeexplore.ieee.org/document/7891544/

         Cheng G, Han J W, Lu X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 105, 1865-1883(2017). http://ieeexplore.ieee.org/document/7891544/

    [31] Xia G S, Hu J W, Hu F et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 3965-3981(2017). http://ieeexplore.ieee.org/document/7907303

         Xia G S, Hu J W, Hu F et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 3965-3981(2017). http://ieeexplore.ieee.org/document/7907303

    Wenxiu Teng, Ni Wang, Taisheng Chen, Benlin Wang, Menglin Chen, Huihui Shi. Deep Adversarial Domain Adaptation Method for Cross-Domain Classification in High-Resolution Remote Sensing Images[J]. Laser & Optoelectronics Progress, 2019, 56(11): 112801
    Download Citation