• Journal of Semiconductors
  • Vol. 42, Issue 4, 042301 (2021)
Lianping Hou, Song Tang, and John H. Marsh
DOI: 10.1088/1674-4926/42/4/042301 Cite this Article
Lianping Hou, Song Tang, John H. Marsh. Monolithic DWDM source with precise channel spacing[J]. Journal of Semiconductors, 2021, 42(4): 042301 Copy Citation Text show less
(Color online) (a) DWDM source optical micrograph. (b) Illustration and relevant dimensions of the side-wall sampled grating with equivalent phase shift. (c) SEM picture of the side-wall sampled gratings. (d) Input part of the MMI coupler.
Fig. 1. (Color online) (a) DWDM source optical micrograph. (b) Illustration and relevant dimensions of the side-wall sampled grating with equivalent phase shift. (c) SEM picture of the side-wall sampled gratings. (d) Input part of the MMI coupler.
(Color online) The simulated C-SBG power reflectivity of the four channels.
Fig. 2. (Color online) The simulated C-SBG power reflectivity of the four channels.
(Color online) Measured from SOA side of the four channels (a) wavelengths vs IDFB when ISOA = 150 mA, and VEAM = 0 V under 20°C, and (b) optical spectra when IDFB = 300 mA, VEAM = 0 V, and ISOA = 150 mA under 20 °C.
Fig. 3. (Color online) Measured from SOA side of the four channels (a) wavelengths vs IDFB when ISOA = 150 mA, and VEAM = 0 V under 20°C, and (b) optical spectra when IDFB = 300 mA, VEAM = 0 V, and ISOA = 150 mA under 20 °C.
(Color online) (a) Measured lasing wavelength of the four channels and the curve of its linear fitting. (b) Residual of the lasing wavelength and SMSR of the four channels. (c) Measured ER from coupled SMF of the four channels. (d) Channel 1 small signal E/O response at different VEAM with IDFB = 300 mA, ISOA = 150 mA.
Fig. 4. (Color online) (a) Measured lasing wavelength of the four channels and the curve of its linear fitting. (b) Residual of the lasing wavelength and SMSR of the four channels. (c) Measured ER from coupled SMF of the four channels. (d) Channel 1 small signal E/O response at different VEAM with IDFB = 300 mA, ISOA = 150 mA.
Schematic structures of (a) C-SBG, (b) 2PS-SBG, (c) 3PS-SBG, and (d) 4PS-SBG. P is the sampling period.
Fig. 5. Schematic structures of (a) C-SBG, (b) 2PS-SBG, (c) 3PS-SBG, and (d) 4PS-SBG. P is the sampling period.
(Color online) Simulated power reflection comparison between (a) uniform grating (UG) and C-SBG, (b) 2PS-SBG and C-SBG, (c) 3PS-SBG and C-SBG, (d) 4PS-SBG and C-SBG.
Fig. 6. (Color online) Simulated power reflection comparison between (a) uniform grating (UG) and C-SBG, (b) 2PS-SBG and C-SBG, (c) 3PS-SBG and C-SBG, (d) 4PS-SBG and C-SBG.
(Color online) (a) Measured optical spectra of the 8-channel laser array at 100 mA (left to right, channels 1 to 8) and (b) 8-channel lasing wavelengths and the linear fitting.
Fig. 7. (Color online) (a) Measured optical spectra of the 8-channel laser array at 100 mA (left to right, channels 1 to 8) and (b) 8-channel lasing wavelengths and the linear fitting.
No of phase step sectionsReflection spectrum characteristicsEffective κ
C-SBGHigher 0th-order grating reflection, weaker ±1st-order reflection0.32
2PS-SBG0th-order reflection disappears; κ for ±1st-order doubled 0.64
3PS-SBG0th-order reflection disappears; either +1st or −1st-order reflection disappears0.83
4-SBG0th-order reflection disappears; either +1st or −1st-order reflection disappears0.90
Table 1. Comparison between PS-SGB and C-SBG in terms of reflection characteristics and effective κ value.
Lianping Hou, Song Tang, John H. Marsh. Monolithic DWDM source with precise channel spacing[J]. Journal of Semiconductors, 2021, 42(4): 042301
Download Citation