• Photonics Research
  • Vol. 11, Issue 2, 150 (2023)
Lin Jiao and Jun-Hong An*
Author Affiliations
  • Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
  • show less
    DOI: 10.1364/PRJ.469779 Cite this Article Set citation alerts
    Lin Jiao, Jun-Hong An. Noisy quantum gyroscope[J]. Photonics Research, 2023, 11(2): 150 Copy Citation Text show less
    References

    [1] P. P. Khial, A. D. White, A. Hajimiri. Nanophotonic optical gyroscope with reciprocal sensitivity enhancement. Nat. Photonics, 12, 671-675(2018).

    [2] Y.-H. Lai, M.-G. Suh, Y.-K. Lu, B. Shen, Q.-F. Yang, H. Wang, J. Li, S. H. Lee, K. Y. Yang, K. Vahala. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics, 14, 345-349(2020).

    [3] S. Srivastava, D. S. Shreesha Rao, H. Nandakumar. Novel optical gyroscope: proof of principle demonstration and future scope. Sci. Rep., 6, 34634(2016).

    [4] A. Gebauer, M. Tercjak, K. U. Schreiber, H. Igel, J. Kodet, U. Hugentobler, J. Wassermann, F. Bernauer, C.-J. Lin, S. Donner, S. Egdorf, A. Simonelli, J.-P. R. Wells. Reconstruction of the instantaneous earth rotation vector with sub-arcsecond resolution using a large scale ring laser array. Phys. Rev. Lett., 125, 033605(2020).

    [5] A. D. V. Di Virgilio, A. Basti, N. Beverini, F. Bosi, G. Carelli, D. Ciampini, F. Fuso, U. Giacomelli, E. Maccioni, P. Marsili, A. Ortolan, A. Porzio, A. Simonelli, G. Terreni. Underground Sagnac gyroscope with sub-prad/s rotation rate sensitivity: toward general relativity tests on Earth. Phys. Rev. Res., 2, 032069(2020).

    [6] G. A. Sanders, A. A. Taranta, C. Narayanan, E. N. Fokoua, S. A. Mousavi, L. K. Strandjord, M. Smiciklas, T. D. Bradley, J. Hayes, G. T. Jasion, T. Qiu, W. Williams, F. Poletti, D. N. Payne. Hollow-core resonator fiber optic gyroscope using nodeless anti-resonant fiber. Opt. Lett., 46, 46-49(2021).

    [7] A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, D. E. Pritchard. Rotation sensing with an atom interferometer. Phys. Rev. Lett., 78, 760-763(1997).

    [8] T. L. Gustavson, P. Bouyer, M. A. Kasevich. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett., 78, 2046-2049(1997).

    [9] D. S. Durfee, Y. K. Shaham, M. A. Kasevich. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope. Phys. Rev. Lett., 97, 240801(2006).

    [10] P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P. Schleich, F. A. Narducci, W. Ertmer, E. M. Rasel. Composite-light-pulse technique for high-precision atom interferometry. Phys. Rev. Lett., 114, 063002(2015).

    [11] R. Trubko, J. Greenberg, M. T. S. Germaine, M. D. Gregoire, W. F. Holmgren, I. Hromada, A. D. Cronin. Atom interferometer gyroscope with spin-dependent phase shifts induced by light near a tune-out wavelength. Phys. Rev. Lett., 114, 140404(2015).

    [12] I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, A. Landragin. Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability. Phys. Rev. Lett., 116, 183003(2016).

    [13] Y. Zhao, X. Yue, F. Chen, C. Huang. Extension of the rotation-rate measurement range with no sensitivity loss in a cold-atom gyroscope. Phys. Rev. A, 104, 013312(2021).

    [14] E. R. Moan, R. A. Horne, T. Arpornthip, Z. Luo, A. J. Fallon, S. J. Berl, C. A. Sackett. Quantum rotation sensing with dual Sagnac interferometers in an atom-optical waveguide. Phys. Rev. Lett., 124, 120403(2020).

    [15] B. Culshaw. The optical fibre Sagnac interferometer: an overview of its principles and applications. Meas. Sci. Technol., 17, R1-R16(2005).

    [16] H. C. Lefèvre. The fiber-optic gyroscope, a century after Sagnac’s experiment: the ultimate rotation-sensing technology?. C. R. Phys., 15, 851-858(2014).

    [17] H. Zhang, X. Chen, X. Shu, C. Liu. Fiber optic gyroscope noise reduction with fiber ring resonator. Appl. Opt., 57, 7391-7397(2018).

    [18] V. Giovannetti, S. Lloyd, L. Maccone. Quantum-enhanced measurements: beating the standard quantum limit. Science, 306, 1330-1336(2004).

    [19] V. Giovannetti, S. Lloyd, L. Maccone. Quantum metrology. Phys. Rev. Lett., 96, 010401(2006).

    [20] V. Giovannetti, S. Lloyd, L. Maccone. Advances in quantum metrology. Nat. Photonics, 5, 222-229(2011).

    [21] C. L. Degen, F. Reinhard, P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89, 035002(2017).

    [22] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, P. Treutlein. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 90, 035005(2018).

    [23] C. M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23, 1693-1708(1981).

    [24] N. J. Engelsen, R. Krishnakumar, O. Hosten, M. A. Kasevich. Bell correlations in spin-squeezed states of 500 000 atoms. Phys. Rev. Lett., 118, 140401(2017).

    [25] D. Gatto, P. Facchi, F. A. Narducci, V. Tamma. Distributed quantum metrology with a single squeezed-vacuum source. Phys. Rev. Res., 1, 032024(2019).

    [26] Y. Israel, S. Rosen, Y. Silberberg. Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett., 112, 103604(2014).

    [27] X.-Y. Luo, Y.-Q. Zou, L.-N. Wu, Q. Liu, M.-F. Han, M. K. Tey, L. You. Deterministic entanglement generation from driving through quantum phase transitions. Science, 355, 620-623(2017).

    [28] M. Fink, F. Steinlechner, J. Handsteiner, J. P. Dowling, T. Scheidl, R. Ursin. Entanglement-enhanced optical gyroscope. New J. Phys., 21, 053010(2019).

    [29] F. De Leonardis, R. Soref, M. De Carlo, V. M. N. Passaro. On-chip group-IV Heisenberg-limited Sagnac interferometric gyroscope at room temperature. Sensors, 20, 3476(2020).

    [30] M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, R. Schnabel. Demonstration of a quantum-enhanced fiber Sagnac interferometer. Opt. Lett., 35, 1665-1667(2010).

    [31] K. Liu, C. Cai, J. Li, L. Ma, H. Sun, J. Gao. Squeezing-enhanced rotating-angle measurement beyond the quantum limit. Appl. Phys. Lett., 113, 261103(2018).

    [32] M. R. Grace, C. N. Gagatsos, Q. Zhuang, S. Guha. Quantum-enhanced fiber-optic gyroscopes using quadrature squeezing and continuous-variable entanglement. Phys. Rev. Appl., 14, 034065(2020).

    [33] A. Luis, I. Morales, A. Rivas. Nonlinear fiber gyroscope for quantum metrology. Phys. Rev. A, 94, 013830(2016).

    [34] C. L. Garrido Alzar. Compact chip-scale guided cold atom gyrometers for inertial navigation: enabling technologies and design study. AVS Quantum Sci., 1, 014702(2019).

    [35] S. S. Szigeti, S. P. Nolan, J. D. Close, S. A. Haine. High-precision quantum-enhanced gravimetry with a Bose-Einstein condensate. Phys. Rev. Lett., 125, 100402(2020).

    [36] S. S. Szigeti, O. Hosten, S. A. Haine. Improving cold-atom sensors with quantum entanglement: prospects and challenges. Appl. Phys. Lett., 118, 140501(2021).

    [37] C. Luo, J. Huang, X. Zhang, C. Lee. Heisenberg-limited Sagnac interferometer with multiparticle states. Phys. Rev. A, 95, 023608(2017).

    [38] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, D. J. Heinzen. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A, 46, R6797-R6800(1992).

    [39] M. Kitagawa, M. Ueda. Squeezed spin states. Phys. Rev. A, 47, 5138-5143(1993).

    [40] S.-Y. Bai, J.-H. An. Generating stable spin squeezing by squeezed-reservoir engineering. Phys. Rev. Lett., 127, 083602(2021).

    [41] U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, I. A. Walmsley. Optimal quantum phase estimation. Phys. Rev. Lett., 102, 040403(2009).

    [42] R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, I. A. Walmsley. Quantum phase estimation with lossy interferometers. Phys. Rev. A, 80, 013825(2009).

    [43] J. Joo, W. J. Munro, T. P. Spiller. Quantum metrology with entangled coherent states. Phys. Rev. Lett., 107, 083601(2011).

    [44] T. Ono, H. F. Hofmann. Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum. Phys. Rev. A, 81, 033819(2010).

    [45] Z. Huang, K. R. Motes, P. M. Anisimov, J. P. Dowling, D. W. Berry. Adaptive phase estimation with two-mode squeezed vacuum and parity measurement. Phys. Rev. A, 95, 053837(2017).

    [46] A. Smirne, J. Kołodyński, S. F. Huelga, R. Demkowicz-Dobrzański. Ultimate precision limits for noisy frequency estimation. Phys. Rev. Lett., 116, 120801(2016).

    [47] F. Albarelli, M. A. C. Rossi, D. Tamascelli, M. G. Genoni. Restoring Heisenberg scaling in noisy quantum metrology by monitoring the environment. Quantum, 2, 110(2018).

    [48] M. Scully, M. Zubairy. Quantum Optics(1997).

    [49] P. Kok, J. Dunningham, J. F. Ralph. Role of entanglement in calibrating optical quantum gyroscopes. Phys. Rev. A, 95, 012326(2017).

    [50] P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick, S. D. Huver, H. Lee, J. P. Dowling. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett., 104, 103602(2010).

    [51] M. M. Rams, P. Sierant, O. Dutta, P. Horodecki, J. Zakrzewski. At the limits of criticality-based quantum metrology: apparent super-Heisenberg scaling revisited. Phys. Rev. X, 8, 021022(2018).

    [52] Z. Hou, Y. Jin, H. Chen, J.-F. Tang, C.-J. Huang, H. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo. ‘Super-Heisenberg’ and Heisenberg scalings achieved simultaneously in the estimation of a rotating field. Phys. Rev. Lett., 126, 070503(2021).

    [53] V. Giovannetti, L. Maccone. Sub-Heisenberg estimation strategies are ineffective. Phys. Rev. Lett., 108, 210404(2012).

    [54] L. Pezzé. Sub-Heisenberg phase uncertainties. Phys. Rev. A, 88, 060101(2013).

    [55] Y. Zhao, N. Aritomi, E. Capocasa, M. Leonardi, M. Eisenmann, Y. Guo, E. Polini, A. Tomura, K. Arai, Y. Aso, Y.-C. Huang, R.-K. Lee, H. Lück, O. Miyakawa, P. Prat, A. Shoda, M. Tacca, R. Takahashi, H. Vahlbruch, M. Vardaro, C.-M. Wu, M. Barsuglia, R. Flaminio. Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors. Phys. Rev. Lett., 124, 171101(2020).

    [56] P. A. Knott, T. J. Proctor, K. Nemoto, J. A. Dunningham, W. J. Munro. Effect of multimode entanglement on lossy optical quantum metrology. Phys. Rev. A, 90, 033846(2014).

    [57] J. J. Cooper, D. W. Hallwood, J. A. Dunningham, J. Brand. Robust quantum enhanced phase estimation in a multimode interferometer. Phys. Rev. Lett., 108, 130402(2012).

    [58] Q.-J. Tong, J.-H. An, H.-G. Luo, C. H. Oh. Mechanism of entanglement preservation. Phys. Rev. A, 81, 052330(2010).

    [59] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, F. Nori. General non-Markovian dynamics of open quantum systems. Phys. Rev. Lett., 109, 170402(2012).

    [60] H.-J. Zhu, G.-F. Zhang, L. Zhuang, W.-M. Liu. Universal dissipationless dynamics in Gaussian continuous-variable open systems. Phys. Rev. Lett., 121, 220403(2018).

    [61] H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini. Colloquium: non-Markovian dynamics in open quantum systems. Rev. Mod. Phys., 88, 021002(2016).

    [62] L. Li, M. J. Hall, H. M. Wiseman. Concepts of quantum non-Markovianity: a hierarchy. Phys. Rep., 759, 1-51(2018).

    [63] J.-H. An, W.-M. Zhang. Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels. Phys. Rev. A, 76, 042127(2007).

    [64] C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe, D. J. Wineland. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature, 403, 269-273(2000).

    [65] D. Kienzler, H.-Y. Lo, B. Keitch, L. de Clercq, F. Leupold, F. Lindenfelser, M. Marinelli, V. Negnevitsky, J. P. Home. Quantum harmonic oscillator state synthesis by reservoir engineering. Science, 347, 53-56(2015).

    [66] N.-H. Tong, M. Vojta. Signatures of a noise-induced quantum phase transition in a mesoscopic metal ring. Phys. Rev. Lett., 97, 016802(2006).

    [67] P. Forn-Díaz, J. J. García-Ripoll, B. Peropadre, J.-L. Orgiazzi, M. A. Yurtalan, R. Belyansky, C. M. Wilson, A. Lupascu. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys., 13, 39-43(2017).

    [68] E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler. 1/f noise: implications for solid-state quantum information. Rev. Mod. Phys., 86, 361-418(2014).

    [69] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, J. Piilo. Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys., 7, 931-934(2011).

    [70] N. K. Bernardes, A. Cuevas, A. Orieux, C. H. Monken, P. Mataloni, F. Sciarrino, M. F. Santos. Experimental observation of weak non-Markovianity. Sci. Rep., 5, 17520(2015).

    [71] Y. Liu, A. A. Houck. Quantum electrodynamics near a photonic bandgap. Nat. Phys., 13, 48-52(2012).

    [72] L. Krinner, M. Stewart, A. Pazmiño, J. Kwon, D. Schneble. Spontaneous emission of matter waves from a tunable open quantum system. Nature, 559, 589-592(2018).

    [73] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, I. Siddiqi. A near–quantum-limited Josephson traveling-wave parametric amplifier. Science, 350, 307-310(2015).