• Acta Optica Sinica
  • Vol. 42, Issue 8, 0800001 (2022)
Kui Zhou1、2, Zheng Shan1、2, Qian Zhang1、2, Xiejun Wang1、2, Jian Zhou3, Chenwei Deng4, and Yiting Yu1、2、*
Author Affiliations
  • 1Ningbo Institute, Research & Development Institute in Shenzhen, School of Mechanical and Engineering, Northwestern Polytechnical University, Xi′an, Shaanxi 710072, China;
  • 2Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Key Laboratory of Micro and Nano Electro-Mechanical Systems of Shaanxi Province, Northwestern Polytechnical University, Xi′an, Shaanxi 710072, China
  • 3Xian Modern Control Technology Research Institute, Xi′an, Shaanxi 710065, China
  • 4School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/AOS202242.0800001 Cite this Article Set citation alerts
    Kui Zhou, Zheng Shan, Qian Zhang, Xiejun Wang, Jian Zhou, Chenwei Deng, Yiting Yu. Research Progresses of MEMS Fabry-Perot Filtering Chips and Their Applications for Spectral Detection[J]. Acta Optica Sinica, 2022, 42(8): 0800001 Copy Citation Text show less
    References

    [1] Garini Y, Young I T. McNamara G. Spectral imaging: principles and applications[J]. Cytometry Part A, 69, 735-747(2006).

    [2] Guainazzi M, Osuna P. Astronomical spectroscopy and virtual observatory[J]. Journal of Cellular Physiology, 128, 389-396(2008).

    [3] Aichi H, Fouad Y, Chabaane Z L et al. Soil total carbon mapping, in Djerid Arid area, using ASTER multispectral remote sensing data combined with laboratory spectral proximal sensing data[J]. Arabian Journal of Geosciences, 14, 1-12(2021).

    [4] Li G L, Deng H, Liu Q C et al. Terahertz characteristic absorption spectral analysis of metronidazole[J]. Laser & Optoelectronics Progress, 57, 173001(2020).

    [5] Rao L B, Pang T, Ji R S et al. Firmness detection for apples based on hyperspectral imaging technology combined with stack autoencoder-extreme learning machine method[J]. Laser & Optoelectronics Progress, 56, 113001(2019).

    [6] Liu D, Zeng X A, Sun D W. Recent developments and applications of hyperspectral imaging for quality evaluation of agricultural products: a review[J]. Critical Reviews in Food Science and Nutrition, 55, 1744-1757(2015).

    [7] He H J, Sun D W. Hyperspectral imaging technology for rapid detection of various microbial contaminants in agricultural and food products[J]. Trends in Food Science & Technology, 46, 99-109(2015).

    [8] Gao S, Wang Q H, Fu D D et al. Nondestructive detection of sugar content and firmness of red globe grape by hyperspectral imaging[J]. Acta Optica Sinica, 39, 1030004(2019).

    [9] Li C L, Liu C Y, Jin J et al. Spectral measurement of minerals and gases based on airborne thermal-infrared hyperspectral imaging system[J]. Journal of Infrared and Millimeter Waves, 39, 767-777(2020).

    [10] Kirsch M, Lorenz S, Zimmermann R et al. Integration of terrestrial and drone-borne hyperspectral and photogrammetric sensing methods for exploration mapping and mining monitoring[J]. Remote Sensing, 10, 1366(2018).

    [11] Han Z Z, Wan J H, Li Y P et al. Detection method of marine oil spilling and emulsified oil based on hyperspectral imaging under UV induction[J]. Acta Optica Sinica, 36, 0130002(2016).

    [12] Ozturk S, Artan Y, Esin Y E et al. Semi-supervised gas detection in hyperspectral imaging[C]∥2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 26-31, 2015, Milan, Italy., 469-472(2015).

    [13] Chen J W, Gong H, Yuan J. Multispectral imaging technology and its applications in biomedicine[J]. Laser & Optoelectronics Progress, 58, 0400001(2021).

    [14] Clancy N T, Jones G, Maier-Hein L et al. Surgical spectral imaging[J]. Medical Image Analysis, 63, 101699(2020).

    [15] He H, Yan S, Lyu D Y et al. Deep learning for biospectroscopy and biospectral imaging: state-of-the-art and perspectives[J]. Analytical Chemistry, 93, 3653-3665(2021).

    [16] Chang H, Koschan A, Abidi M et al. Multispectral visible and infrared imaging for face recognition[C]∥2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, June 23-28, 2008, Anchorage, AK., 10104386(2008).

    [17] Zhao J W, Hui Z, Huang L et al. Quantitative detection of TVB-N content in chicken meat with hyperspectral imaging technology[J]. Laser & Optoelectronics Progress, 50, 073003(2013).

    [18] Chen Q, Yang Z C, Sun Y et al[J]. Research on identification of the authenticity of currency by fluorescence spectral imaging Forensic Science and Technology, 2012, 16-21.

    [19] Makki I, Younes R, Francis C et al. A survey of landmine detection using hyperspectral imaging[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 40-53(2017).

    [20] Tiwari K C, Arora M K, Singh D. An assessment of independent component analysis for detection of military targets from hyperspectral images[J]. International Journal of Applied Earth Observation and Geoinformation, 13, 730-740(2011).

    [21] Yang S, Song Z Y, Yuan H Y et al. Fast high-order matched filter for hyperspectral image target detection[J]. Infrared Physics & Technology, 94, 151-155(2018).

    [22] Shimoni M, Haelterman R, Perneel C. Hyperspectral imaging for military and security applications: combining myriad processing and sensing techniques[J]. IEEE Geoscience and Remote Sensing Magazine, 7, 101-117(2019).

    [23] Ke C. Military object detection using multiple information extracted from hyperspectral imagery[C]∥2017 International Conference on Progress in Informatics and Computing (PIC), December 15-17, 2017, Nanjing, China., 124-128(2017).

    [24] Farrell M D, Mersereau R M. On the impact of PCA dimension reduction for hyperspectral detection of difficult targets[J]. IEEE Geoscience and Remote Sensing Letters, 2, 192-195(2005).

    [25] Jia J X, Wang Y M, Chen J S et al. Status and application of advanced airborne hyperspectral imaging technology: a review[J]. Infrared Physics & Technology, 104, 103115(2020).

    [26] Sellar R G, Boreman G D. Classification of imaging spectrometers for remote sensing applications[J]. Optical Engineering, 44, 013602(2005).

    [27] Brazile J, Neville R A, Staenz K et al. Scene-based spectral response function shape discernibility for the APEX imaging spectrometer[J]. IEEE Geoscience and Remote Sensing Letters, 3, 414-418(2006).

    [28] Xue Q S, Tian Z T, Yang B et al. Underwater hyperspectral imaging system using a prism-grating-prism structure[J]. Applied Optics, 60, 894-900(2021).

    [29] Wen M X, Wang Y M, Yao Y et al. Design and performance of curved prism-based mid-wave infrared hyperspectral imager[J]. Infrared Physics & Technology, 95, 5-11(2018).

    [30] Protopopov V. Imaging Fourier spectrometer in visible domain: design concept[J]. Applied Optics, 59, 6252-6264(2020).

    [31] Naik D N, Pedrini G, Takeda M et al. Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer[J]. Optics Letters, 39, 1857-1860(2014).

    [32] Shen H L, Zou Z, Zhu Y F et al. Block-based multispectral image registration with application to spectral color measurement[J]. Optics Communications, 451, 46-54(2019).

    [33] He Z P, Wang B Y, Lü G et al. Operating principles and detection characteristics of the visible and near-infrared imaging spectrometer in the Chang’e-3[J]. Research in Astronomy and Astrophysics, 14, 1567-1577(2014).

    [34] He Z P, Wang B Y, Lü G et al. Visible and near-infrared imaging spectrometer and its preliminary results from the Chang’e 3 project[J]. Review of Scientific Instruments, 85, 083104(2014).

    [35] Joshi P. Advances in development of MOEMS devices: a review[J]. HELIX, 9, 5868-5873(2019).

    [36] Martinez J A, Liu T, Panepucci R R. Micro-opto-electro-mechanical system (MOEMS) for microstructure manipulation and optical characterization[J]. Proceedings of SPIE, 6645, 664525(2007).

    [37] Ollier E, Mottier P L. Micro-opto-electro-mechanical systems: recent developments and LETI’s activities[J]. Proceedings of SPIE, 4075, 12-21(2000).

    [38] Xiong K L, Tordera D, Emilsson G et al. Switchable plasmonic metasurfaces with high chromaticity containing only abundant metals[J]. Nano Letters, 17, 7033-7039(2017).

    [39] Kaplan A F, Xu T, Guo L J. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Applied Physics Letters, 99, 143111(2011).

    [40] Greybush N J, Liberal I, Malassis L et al. Plasmon resonances in self-assembled two-dimensional Au nanocrystal metamolecules[J]. ACS Nano, 11, 2917-2927(2017).

    [41] Zhao J C, Qiu M, Yu X C et al. Defining deep-subwavelength-resolution, wide-color-gamut, and large-viewing-angle flexible subtractive colors with an ultrathin asymmetric Fabry-Perot lossy cavity[J]. Advanced Optical Materials, 7, 1900646(2019).

    [42] Yu Y T, Yuan W Z, Sun R K et al. A strategy to efficiently extend the change rate of period for comb-drive micromechanical pitch-tunable gratings[J]. Journal of Microelectromechanical Systems, 19, 1180-1185(2010).

    [43] Ebermann M, Neumann N, Hoppe S et al. Tiny mid- and long-wave infrared spectrometer mo-dule with a MEMS dual-band Fabry-Pérot filter. [C]∥Proceedings IRS 2 2011, June 7-9, 2011, Nürnberg, Germany. Nürnberg: AMA Association for Sensors and Measurement, 94-99(2011).

    [44] Atherton P D, Reay N K, Ring J et al. Tunable Fabry-Perot filters[J]. Optical Engineering, 20, 206806(1981).

    [45] Mallinson S R, Jerman J H. Miniature micromachined Fabry-Perot interferometers in silicon[J]. Electronics Letters, 23, 1041-1043(1987).

    [46] Vaughan J M. The Fabry-Perot interferometer: history, theory, practice and applications[M]. Boca Raton: Routledge(2017).

    [47] Ebermann M, Neumann N, Hiller K et al. Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review[J]. Proceedings of SPIE, 9760, 97600H(2016).

    [48] Schuler L P, Milne J S, Dell J M et al. MEMS-based microspectrometer technologies for NIR and MIR wavelengths[J]. Journal of Physics D: Applied Physics, 42, 133001(2009).

    [49] Cheng J, Zhe J, Wu X T. Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators[J]. Journal of Micromechanics and Microengineering, 14, 57-68(2004).

    [50] Milne J, Dell J, Keating A et al. Extended tuning range Fabry-Perot etalon with doubly-supported beam actuators[C]∥IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, 2006, August 21-24, 2006, Big Sky, MT, USA., 134-135(2006).

    [51] Milne J S, Dell J M, Keating A J et al. Widely tunable MEMS-based Fabry-Perot filter[J]. Journal of Microelectromechanical Systems, 18, 905-913(2009).

    [52] Antila J, Miranto A, Mäkynen J et al. MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT[J]. Proceedings of SPIE, 7680, 76800U(2010).

    [53] Amano T, Koyama F, Hino T et al. Design and fabrication of GaAs-GaAlAs micromachined tunable filter with thermal strain control[J]. Journal of Lightwave Technology, 21, 596-601(2003).

    [54] Lee H K, Kim K S, Yoon E. A wide-range linearly tunable optical filter using Lorentz force[J]. IEEE Photonics Technology Letters, 16, 2087-2089(2004).

    [55] Wolffenbuttel R F. State-of-the-art in integrated optical microspectrometers[J]. IEEE Transactions on Instrumentation and Measurement, 53, 197-202(2004).

    [56] Garmire E. Theory of quarter-wave-stack dielectric mirrors used in a thin Fabry-Perot filter[J]. Applied Optics, 42, 5442-5449(2003).

    [57] Cho YJ, Cho HM, Lee YW, et al., 1998, 313/314: 292- 297.

    [58] Sandner T, Kenda A, Drabe C et al. Miniaturized FTIR-spectrometer based on an optical MEMS translatory actuator[J]. Proceedings of SPIE, 6466, 646602(2007).

    [59] Kerber M, Dick B, Fralick M et al. Design of highly reflective subwavelength diffraction gratings for use in a tunable spectrometer[C]∥SENSORS, 2009 IEEE, October 25-28, 2009, Christchurch, New Zealand., 1984-1987(2009).

    [60] Ho C P, Pitchappa P, Kropelnicki P et al. Characterization of polycrystalline silicon-based photonic crystal-suspended membrane for high temperature applications[J]. Journal of Nanophotonics, 8, 084096(2014).

    [61] Chadha A S, Zhao D Y, Chuwongin S et al. Polarization- and angle-dependent characteristics in two dimensional photonic crystal membrane reflectors[J]. Applied Physics Letters, 103, 211107(2013).

    [62] Mott D B, Barclay R B, Bier A et al. Micromachined tunable Fabry-Perot filters for infrared astronomy[J]. Proceedings of SPIE, 4841, 578-585(2003).

    [63] Palmer J A, Hsieh W T, Quijada M et al. Design, characterization, and control of a large aperture MOEMS Fabry-Perot tunable infrared filter[J]. Proceedings of SPIE, 6114, 61140G(2006).

    [64] Gupta N, Tan S S, Zander D R. MEMS-based tunable Fabry-Perot filters[J]. Proceedings of SPIE, 8032, 803205(2011).

    [65] Gupta N, Tan S S. Spectral imaging characterization of quartz MOEM tunable Fabry-Perot filter[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 11, 033002(2012).

    [66] Gupta N, Tan S S, Zander D R. Microelectromechanical systems-based visible-near infrared Fabry-Perot tunable filters using quartz substrate[J]. Optical Engineering, 51, 074007(2012).

    [67] Rossberg D. Silicon micromachined infrared sensor with tunable wavelength selectivity for application in infrared spectroscopy[J]. Sensors and Actuators A: Physical, 47, 413-416(1995).

    [68] Neumann N, Ebermann M, Kurth S et al. Tunable infrared detector with integrated micromachined Fabry-Perot filter[J]. Journal of Microlithography Microfabrication & Microsystems, 7, 021004(2008).

    [69] Ebermann M, Neumann N, Hiller K et al. Recent advances in expanding the spectral range of MEMS Fabry-Perot filters[J]. Proceedings of SPIE, 7594, 75940V(2010).

    [70] Meinig M, Ebermann M, Neumann N et al. Dual-band MEMS Fabry-Pérot filter with two movable reflectors for mid- and long-wave infrared microspectrometers[C]∥2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, June 5-9, 2011, Beijing, China., 2538-2541(2011).

    [71] Meinig M, Kurth S, Hiller K et al. Tunable mid-infrared filter based on Fabry-Perot interferometer with two movable reflectors[J]. Proceedings of SPIE, 7930, 79300K(2011).

    [72] Ebermann M, Neumann N, Hiller K et al. Widely tunable Fabry-Perot filter based MWIR and LWIR microspectrometers[J]. Proceedings of SPIE, 8374, 83740X(2012).

    [73] Helke C, Meinig M, Seifert M et al. VIS Fabry-Pérot-interferometer with (HL)4 PE-Si3N4/PE-SiO2 reflectors on freestanding LP-Si3N4 membranes for surface enhanced Raman spectroscopy[J]. Proceedings of SPIE, 9760, 97600I(2016).

    [74] Helke C, Hiller K, Seiler J et al. VIS Fabry-Pérot Interferometer with structured (TiO2/PE-SiO2) 3 Bragg-reflectors on 5 mm large LP-Si3N4 membranes[J]. Proceedings of SPIE, 10931, 109310Q(2019).

    [75] Helke C, Hiller K, Werner T et al. Large-scale fabrication of LP-CVD Si3N4 photonic crystal structures as freestanding reflectors with 1 mm aperture for Fabry-Pérot interferometers[J]. Proceedings of SPIE, 10354, 1035403(2017).

    [76] Blomberg M, Torkkeli A, Lehto A et al. Electrically tuneable micromachined Fabry-Perot interferometer in gas analysis[J]. Physica Scripta, T69, 119-121(1997).

    [77] Rissanen A, Guo B, Saari H et al. VTT’s Fabry-Perot interferometer technologies for hyperspectral imaging and mobile sensing applications[J]. Proceedings of SPIE, 10116, 101160I(2017).

    [78] Blomberg M, Kattelus H, Miranto A. Electrically tunable surface micromachined Fabry-Perot interferometer for visible light[J]. Procedia Chemistry, 1, 552-555(2009).

    [79] Puurunen R L, Saarilahti J, Kattelus H. Implementing ALD layers in MEMS processing[J]. ECS Transactions, 11, 3-14(2019).

    [80] Rissanen A, Puurunen R L. Use of ALD thin film Bragg mirror stacks in tuneable visible light MEMS Fabry-Perot interferometers[J]. Proceedings of SPIE, 8249, 82491A(2012).

    [81] Rissanen A, Akujärvi A, Antila J E et al. MOEMS miniature spectrometers using tuneable Fabry-Perot interferometers[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 11, 023003(2012).

    [82] Rissanen A, Langner A, Viherkanto K H et al. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers[J]. Proceedings of SPIE, 9375, 93570J(2015).

    [83] Guo B, Näsilä A, Trops R et al. Wide-band large-aperture Ag surface-micro-machined MEMS Fabry-Perot interferometers (AgMFPIs) for miniaturized hyperspectral imaging[J]. Proceedings of SPIE, 10545, 105450U(2018).

    [84] Jussi M. A lightweight hyperspectral imager[D]. Finland: Helsinki University of Technology(2009).

    [85] Saari H, Aallos V V, Holmlund C et al. Novel hyperspectral imager for lightweight UAVs[J]. Proceedings of SPIE, 7668, 766805(2010).

    [86] Saari H, Aallos V V, Akujärvi A et al. Novel miniaturized hyperspectral sensor for UAV and space applications[J]. Proceedings of SPIE, 7474, 74741M(2009).

    [87] Mannila R, Hyypiö R, Korkalainen M et al. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone[J]. Proceedings of SPIE, 9482, 94820P(2015).

    [88] Rissanen A, Saari H, Rainio K et al. MEMS FPI-based smartphone hyperspectral imager[J]. Proceedings of SPIE, 9855, 985507(2016).

    [89] Kestilä A, Tikka T, Peitso P et al. Aalto-1 nanosatellite-technical description and mission objectives[J]. Geoscientific Instrumentation, Methods and Data Systems, 2, 121-130(2013).

    [90] Praks J, Kestil A, Niemel P et al[2021-08-03]. Aalto-1 nanosatellite mission status and initial observations [2021-08-03].https:∥www.researchgate.net/publication/322251443_Aalto-1_nanosatellite_mission_status_and_initial_observations..

    [91] Praks J, Mughal M R, Vainio R et al. Aalto-1, multi-payload CubeSat: design, integration and launch[J]. Acta Astronautica, 187, 370-383(2021).

    [92] Mannila R, Näsilä A, Viherkanto K et al. Spectral imager based on Fabry-Perot interferometer for Aalto-1 nanosatellite[J]. Proceedings of SPIE, 8870, 887002(2013).

    [93] Mannila R, Näsilä A, Praks J et al. Miniaturized spectral imager for Aalto-1 nanosatellite[J]. Proceedings of SPIE, 8176, 817628(2011).

    [94] Saari H, Aallos V V, Holmlund C et al. Handheld hyperspectral imager[J]. Proceedings of SPIE, 7680, 76800D(2010).

    [95] Antila J, Mannila R, Kantojärvi U et al. Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer[J]. Proceedings of SPIE, 8374, 83740F(2012).

    [96] Li S H, Zhong S L, Xu J et al. Fabrication and characterization of a thermal tunable bulk-micromachined optical filter[J]. Sensors and Actuators A: Physical, 188, 298-304(2012).

    [97] Zhai L Y, Xu J, Wu Y M. Design and fabrication of independent-cavity FP tunable filter[J]. Optics Communications, 297, 154-164(2013).

    [98] Liu K, Li H, Zhang X Y et al. Development and characterization of an electrically tunable liquid-crystal Fabry-Pérot hyperspectral imaging device[J]. Journal of Applied Remote Sensing, 5, 053539(2011).

    [99] Meng Q H. Design and fabrication of the F-P cavity tunable infrared filter with 128×128 array based on MEMS technology[D]. Wuhan: Huazhong University of Science and Technology(2015).

    [100] Mao H F. Silva K K M B D, Martyniuk M, et al. Ge/ZnS-based micromachined Fabry-Perot filters for optical MEMS in the longwave infrared[J]. Journal of Microelectromechanical Systems, 24, 2109-2116(2015).

    [101] Velicu S, Buurma C, Bergeson J D et al. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays[J]. Proceedings of SPIE, 9100, 91000F(2014).

    [102] Hosseini P, Wright C D, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films[J]. Nature, 511, 206-211(2014).

    [103] Bourgade A, Lumeau J. Large aperture, highly uniform narrow bandpass Fabry-Perot filter using photosensitive As2S3 thin films[J]. Optics Letters, 44, 351-354(2019).

    [104] Williams C, Hong N, Julian M et al. Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe[J]. Optics Express, 28, 10583-10594(2020).

    [105] Julian M N, Williams C, Borg S et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging[J]. Optica, 7, 746-754(2020).

    [106] Manifold B, Men S, Hu R et al. A versatile deep learning architecture for classification and label-free prediction of hyperspectral images[J]. Nature Machine Intelligence, 3, 306-315(2021).

    [107] Liu P, Zhang H, Eom K B. Active deep learning for classification of hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 712-724(2017).

    Kui Zhou, Zheng Shan, Qian Zhang, Xiejun Wang, Jian Zhou, Chenwei Deng, Yiting Yu. Research Progresses of MEMS Fabry-Perot Filtering Chips and Their Applications for Spectral Detection[J]. Acta Optica Sinica, 2022, 42(8): 0800001
    Download Citation