• Laser & Optoelectronics Progress
  • Vol. 53, Issue 7, 71401 (2016)
Yin Qiwei* and Lu Huadong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.071401 Cite this Article Set citation alerts
    Yin Qiwei, Lu Huadong. Influence of Curvature Radius of Cavity Mirrors on Performance of High-Power Single-Frequency Laser[J]. Laser & Optoelectronics Progress, 2016, 53(7): 71401 Copy Citation Text show less
    References

    [1] Koechner W. Thermal lensing in a Nd:YAG laser rod[J]. Appl Opt, 1970, 9(11): 2548-2553.

    [2] Cheng E, Dudley D R, Nighan W L, et al.. Lasers with low doped gain medium: US, 6185235[P]. 2001-2-6.

    [3] Wang Yaoting, Zhang Ruihong, Li Wujun. High power all-solid-state continuous-wave NdGdVO4 laser of single-frequency operation at 1342 nm[J]. Laser & Optoelectronics Progress, 2015, 52(11): 111402.

    [4] Zhao Zhigang, Dong Yantao, Pan Sunqiang, et al.. Investigation on LD double-end-pumped high power Q-switched YVO4-Nd:YVO4-YVO4 fundamental mode solid state laser[J]. Chinese J Lasers, 2010, 37(9): 2409-2414.

    [5] Zhao Jingyun, Zhang Kuangshou. High-power single-frequency Nd:YVO4 laser dual-end-pumped by diode laser[J]. J Quantum Opt, 2004, 10(2): 87-92.

    [6] McDonagh L, Wallenstein R, Knappe R, et al.. High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm[J]. Opt Lett, 2006, 31(22): 3297-2399.

    [7] Yin Qiwei, Lu Huadong. Influence of wavelength of pump source on output power of 1064 nm laser[J]. Laser & Optoelectronics Progress, 2015, 52(9): 091402.

    [8] Wang Y J , Zheng Y H, Shi Z, et al.. High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms[J]. Laser Phys Lett, 2012, 9(7): 506-510.

    [9] Martin K I, Clarkson W A, Hanna D C. 3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser[J]. Opt Lett, 1996, 21(12): 875-877.

    [10] Zheng Yaohui, Lu Huadong, Li Fengqin, et al.. All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-frequency operation[J]. Chinese J lasers, 2007, 34(6): 739-742.

    [11] Yin Q W, Lu H D, Peng K C. Investigation of the thermal lens effect of the TGG crystal in high-power frequency-doubled laser with single frequency operation[J]. Opt Express, 2015, 23(4): 4981-4990.

    [12] Lenhardt F, Nittmann M, Bauer T, et al.. High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode[J]. Appl Phys B, 2009, 96(4): 803-807.

    [13] Zheng Y H, Li F Q, Wang Y J, et al.. High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter[J]. Opt Commun, 2010, 283(2): 309-312.

    [14] Jin Xiaoli, Su Jing, Jin Pixian, et al.. Study on a high-precision digital temperature-control system for all-solid-state single-frequency green laser[J]. Chinese J Lasers, 2015, 42(9): 0902010.

    [15] Smith R. Theory of intracavity optical second-harmonic generation[J]. IEEE J Quantum Electronics, 1968, 6(4): 215-223.

    [16] Cheng Y, Fanning C G, Siegman A E. Transverse-mode astigmatism in a diode-pumped unstable resonator Nd:YVO4 laser[J]. Appl Opt, 1997, 36(6): 1130-1134.

    CLP Journals

    [1] Zhang Lianping, Yin Guoling, Li Fengqin, Shi Zhu, Lu Huadong. All-Solid-State Tunable Ti∶Sapphire Laser with High-Power and Single-Frequency at 900 nm[J]. Chinese Journal of Lasers, 2017, 44(12): 1201002

    Yin Qiwei, Lu Huadong. Influence of Curvature Radius of Cavity Mirrors on Performance of High-Power Single-Frequency Laser[J]. Laser & Optoelectronics Progress, 2016, 53(7): 71401
    Download Citation