• Journal of Semiconductors
  • Vol. 41, Issue 11, 111403 (2020)
Jiaxin Liu1, Xiyuan Tang2, Linxiao Shen2, Shaolan Li3, Zhelu Li2、4, Wenjuan Guo2, and Nan Sun1、2
Author Affiliations
  • 1Department of Electrical Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
  • 2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78712, USA
  • 3School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta 30313, USA
  • 4College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.1088/1674-4926/41/11/111403 Cite this Article
    Jiaxin Liu, Xiyuan Tang, Linxiao Shen, Shaolan Li, Zhelu Li, Wenjuan Guo, Nan Sun. Error suppression techniques for energy-efficient high-resolution SAR ADCs[J]. Journal of Semiconductors, 2020, 41(11): 111403 Copy Citation Text show less

    Abstract

    The successive approximation register (SAR) is one of the most energy-efficient analog-to-digital converter (ADC) architecture for medium-resolution applications. However, its high energy efficiency quickly diminishes when the target resolution increases. This is because a SAR ADC suffers from several major error source, including the sampling kT/C noise, the comparator noise, and the DAC mismatch. These errors are increasing hard to address in high-resolution SAR ADCs. This paper reviews recent advances on error suppression techniques for SAR ADCs, including the sampling kT/C noise reduction, the noise-shaping (NS) SAR, and the mismatch error shaping (MES). These techniques aim to boost the resolution of SAR ADCs while maintaining their superior energy efficiency.
    $\overline {v_{\rm{ns}}^2} = \int_0^\infty {\frac{{4kTR}}{{1 + {{(2\pi f{R_{\rm{on}}}C)}^2}}}} \rm{d}f = \frac{{kT}}{C}.$(1)

    View in Article

    $\overline {v_{\rm{n,comp}}^2} = \overline {v_{\rm{n,preamp}}^2} + \overline {\frac{{v_{\rm{n,latch}}^2}}{{{A^2}}}} ,$(2)

    View in Article

    $\overline {v_{\rm{n,preamp}}^2} = \frac{{4kT\gamma }}{{{g_{\rm{m}}}/{I_{\rm{D}}}}} \cdot \frac{1}{{{C_{\rm{x}}}({V_{\rm{thp}}} + {V_{\rm{thn}}})}},$(3)

    View in Article

    $\overline {v_{\rm{n,latch}}^2} = \frac{{2kT(1 + \gamma )}}{{{C_{\rm{o}}}}},$(4)

    View in Article

    ${C_i}{\rm{ = }}\left\{ \begin{array}{l} {2^{11}}C,\;i = {\rm{11}}, \\ {2^i}C + {e_i},\;i = 0,1,...,10, \\ \end{array} \right.$(5)

    View in Article

    ${D_{\rm{out}}} = {V_{\rm{in}}} + E.$(6)

    View in Article

    $E = \sum_0^{10} {{D_i}{e_i}} .$(7)

    View in Article

    $\rm{PSD} \approx \frac{{4kT\gamma }}{{{g_{\rm{m}1}}}},$(8)

    View in Article

    $\rm{NBW} \approx \frac{{{g_{\rm{m}1}}{g_{\rm{m}2}}{R_{\rm{L}}}}}{{4C}},$(9)

    View in Article

    $\overline {v_{\rm{ns}}^2} \approx \frac{{kT\gamma }}{C}{g_{\rm{m}2}}{R_{\rm{L}}}.$(10)

    View in Article

    $ \rm{NTF}\left(z\right)=\frac{1}{1+H\left(z\right)}=1-p {z}^{-1}, $ (11)

    View in Article

    Jiaxin Liu, Xiyuan Tang, Linxiao Shen, Shaolan Li, Zhelu Li, Wenjuan Guo, Nan Sun. Error suppression techniques for energy-efficient high-resolution SAR ADCs[J]. Journal of Semiconductors, 2020, 41(11): 111403
    Download Citation